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ABSTRACT

Radio-frequency identi�cation (RFID) systems, as major enablers

of automatic identi�cation, are currently supplemented with vari-

ous interesting sensing functions, e.g., motion tracking. All these

sensing applications forcedly requiremuch higher reading rate (i.e.,

sampling rate) such that any fast movement of tagged objects can

be accurately captured in a timely manner through tag readings.

However, COTS RFID systems su�er from an extremely low indi-

vidual reading rate when multiple tags are present, due to their in-

tense channel contention in the link layer. In this work, we present

a holistic system, called Tagwatch, a rate-adaptive reading system

for COTS RFID devices. This work revisits the reading rate from a

distinctive perspective: mobility. We observe that the reading de-

mands of mobile tags are considerably more urgent than those of

stationary tags because the states of the latter nearly remain un-

changed; meanwhile, only a few tags (e.g., < 20%) are actually in

motion despite the existence of a massive amount of tags in prac-

tice. Thus, Tagwatch adaptively improves the reading rates for mo-

bile tags by cutting down the readings of stationary tags. Our main

contribution is a two-phase reading design, wherein the mobile

tags are discriminated in the Phase I and exclusively read in the

Phase II. We built a prototype of Tagwatch with COTS RFID read-

ers and tags. Results from our microbenchmark analysis demon-

strate that the new design outperforms the reading rate by 3.2×
when 5% of tags are moving.

CCS CONCEPTS

•Networks→Cyber-physical networks; •Computer systems

organization → Embedded and cyber-physical systems;

KEYWORDS

RFID; Rate-Adaptive Reading; EPCGlobal Gen2; Two-phase Proto-

col; Tagwatch

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associ-
ation for Computing Machinery.
ACM ISBN 978-1-4503-5422-6/17/12. . . $15.00
https://doi.org/10.1145/3143361.3143387

1 INTRODUCTION

Radio-frequency identi�cation (RFID), as one of the top 10 in�uen-

tial technologies in the 21st century [9], is widely used in various

�elds, such as logistic, supply chain management, asset manage-

ment, and so on. In contrast to conventional identi�cation tech-

nologies (e.g., barcode), RFID o�ers many attractive advantages,

such as non-optical proximity, long transmission range, multiple

inventory, and so on. The initial purpose of RFID is to automati-

cally identify (i.e., Auto-ID) objects fast and conveniently. Its po-

tential applications have been explored in the past decade; among

which, the most promising is in tracking mobile objects. Many ap-

plications bene�t from highly accurate motion tracking. For ex-

ample, supermarkets can thoroughly observe the shopping habits

of consumers by monitoring the trajectories of items [22]. Several

new battery-free human-machine interactive devices can be devel-

oped, such as writing letters in the air by attaching a tag to a �n-

ger [27]. Complex multiplayer behavior is also automatically rec-

ognized through a tagged football in an international game [10].

Enabling a robot to search for, pick up, fetch, and deliver a particu-

lar object from an assembly line has received considerable interest

in both the academic community and various industries [25]. High-

precision 3D orientation [29] or rotations [31] of passive objects

are monitored through backscatter signals from tags.

The basic concept behind the above tracking applications is to

regard each tag reading as one sampling of its motion state (or state

of its attached object), which imposes a tacit assumption; that is,

the sampling rate (i.e., reading rate, the number of reading times

per second) must be su�ciently high, such that an object’s state

changes can be continuously and faultlessly captured using tag

readings for both slow and fast transitions. To visually illustrate

the impact of reading rate on motion tracking, Fig. 1(a) shows an

example 1 in which the trajectory of a tagged toy train moving

along a circular track is recovered. Moreover, we place two and

four stationary tags beside the track. Consequently, the reading

rate of the mobile tag is sharply reduced from 68Hz (i.e., no sta-

tionary tag) to 30Hz (i.e., two stationary tags) and 21Hz (i.e., four

stationary tags) due to the channel contentions in the link layer.

Correspondingly, the mean tracking accuracy (for additional de-

tails including the tracking algorithm, see §7) decreases from 1.8cm

to 10cm (i.e., about 10× drop). Clearly, reading rate considerably

a�ects motion surveillance, particularly when multiple tags are

present.

A number of recent works have attempted to explore the possi-

bility of improving reading rate from two layers. (1)The �rst group
1Despite a single moving tag shown in the example, our system can deal with the case
where multiple mobile objects present.
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Fig. 1: Tracing a mobile object using one RFID tag in com-

pany with di�erent numbers of stationary tags. (a) Tradi-

tional reading with zero, two and four stationary tags. (b) Rate-

adaptive reading with four stationary tags.

of studies enables RFID tags to transmit in parallel in the physi-

cal layer [3, 12, 21, 26]. However, these work cannot be applied to

mobile tags because they require tags remaining the channel co-

e�cients relatively unchanged. Clearly, moving tags change their

coe�cients rapidly, making physical symbol clusters in the con-

stellation domain di�cult to distinguish. (2) The second group of

studies attempts to design e�cient anti-collision protocols. RFID

tags respond completely to a centralized scheduling of a reader for

medium access. The current ine�cient scheduling mechanism has

resulted in a large number of useless empty and collided slots. Prior

designs [4, 7, 15, 17], however, require substantial modi�cations to

COTS tags or reader to enable collision resolution. The aforemen-

tioned two types of schemes can hardly bene�t from the existing

deployment of billions of COTS RFID tags worldwide with global-

ized standards.

Unlike the above priorworks, we explore tag’s reading rate from

the third perspective: mobility. We observe that only a few tags

(e.g., < 20%) are actually in motion despite the existence of a mas-

sive amount of tags in practice. For example, tens out of thousands

of goods in a supermarket or warehouse are simultaneously picked

up by a customer in an instant. Our real trace data acquired from

a medium-sized sorting system also suggest that less than 10% of

package pieces are being transported on conveyors. The remain-

ing package pieces are sorted well and always remain stationary.

Stationary tags do not urgently require a high reading rate because

their states remains unchanged (i.e., similar to the state obtained

in the previous time.). Therefore, we should treat the individual

reading rate for each tag di�erently and perform a rate-adaptive

reading, which allocates more time for reading mobile tags but less

time for reading static tags.

In this work, we present a holistic system, called Tagwatch, a

rate-adaptive reading system for COTS RFID devices. This system

o�ers higher reading rate for mobile tags, which have high prior-

ity in surveillance applications. Transforming this high-level idea

into a practical system requires addressing two main challenges.

(1)How do we know which tags are moving? Identifying mobile tags

is challenging because their movements are unpredictable, partic-

ularly in a rapidly changing environment with non-ideal commu-

nication conditions. Even worse, a static tag may suddenly start

to move at any time, or vice versa. (2) How do we exclusively read

a speci�c set of mobile tags without reading stationary tags? The

naive solution of dividing space for multiple access fails because

the spatial distribution of mobile tags are totally unknown, and

the mobile tags may frequently go across multiple divisions. Inap-

propriate space division may lead to massive unexpected readings

of stationary tags, which are collaterally covered.

To address these challenging issues, Tagwatch adopts a two-

phase reading design. In the �rst phase, Tagwatch begins a rel-

atively shorter inventory procedure to read all tags. Thereafter,

Tagwatch performs a motion assessment using backscatter signals

from tags to identify mobile tags (see §4). In the second phase, Tag-
watch performs selective reading (i.e., using Select command),

to intensively and exclusively readmobile tags for a relatively longer

interval (see §5). In this manner, the average individual reading

rates of mobile tags are signi�cantly increased. Fig. 1(b) shows the

recovered trajectory of a mobile tag in company with four inter-

fered stationary tags using rate-adaptive reading. Even with the

presence of four other tags, the mean accuracy (i.e., 3.34cm) of the

recovered trajectory remains as good as that obtained without a

static tag.

Summary of Results: Tagwatch works with COTS RFID de-

vices and is a purely software solution. We built and evaluated a

prototype of Tagwatch using ImpinJ readers and numerous Alien

tags (see §6). We conducted extensive testbed experiments in our

laboratory (see §7) and obtained the following �ndings:

• We accurately model the reading rate for current COTS read-

ers. Both the model and our empirical study indicate that the mean

individual reading rate will drastically decrease by 84% when the

total number of tags is over 30.

• Tagwatch can successfully identify mobile tags with a mean

probability of 80% as long as a tagmoves beyond 1cm. It also achieves

95% of accuracy for motion detection, whereas the false positive

rate (FPR) is maintained at below 10%.

• Tagwatch can outperform the individual reading rates of mo-

bile tags by a median of 3.2× and 1.9× when there are 5% and 10%

mobile tags.

Contributions. In this work, we made the following contribu-

tions: To the best of our knowledge, Tagwatch is the �rst RFID

system that performs rate-adaptive reading on COTS devices by

considering tag’s mobility. It solves a practical problem in the do-

main of motion surveillance using RFID tags. Speci�cally, we in-

troduce the algorithm of motion assessment to automatically iden-

tify mobile tags without an ideal communication model. Second,

by converting selective reading into the set-covering problem, we
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present a scheduling algorithm for the selective reading of mobile

tags. Third, we systematically evaluate the system.

2 BACKGROUND & MOTIVATION

This section reviews the background of RFID inventory, presents

the theoretical model of reading rate, and then shows the motiva-

tion behind the rate-adaptive reading.

2.1 Reading Rate: State-of-the-Art

RFID systems adopt the reader-talks-�rstmode, inwhich the reader

dominates communication and all the tags follow its commands.

The Individual Reading Rates (IRR) of tags, de�ned as the number

of readings obtained from a particular tag per second, highly de-

pend on the e�ciency of the anti-collision protocol, which is used

to avoid signal collisions that occur when multiple tags reply their

IDs simultaneously. Subsequently, we gradually introduce the anti-

collision protocol used in COTS RFID systems.

Framed Slotted ALOHA(FSA). FSA is the basic anti-collision

protocol. In FSA, the reader divides time into several slots, which

are further organized into frames. The reader broadcasts theSelect

command to start an inventory round, which consists of several

frames. In the beginning of a frame, the reader broadcasts the com-

mand Query which takes the parameter of the frame length f

(i.e., the number of slots present in the current frame). After re-

ceiving the Query command, each tag randomly selects an inte-

ger ∈ [0, f − 1] and stores it in the local variable SC. Afterwards,

the reader starts a time slot by broadcasting QueryRep, which

lets the tag decrease its SC by one. If the SC of the tag is equal

to 0, then it immediately replies with a 16-bit random signal (i.e.,

RN16). The tag that chooses a collision-free slot is acknowledged

with the ACK command and allowed to transmit its EPC in the

subsequent time slice. Otherwise, the reader sends QueryRep to

proceed to the next time slot. This process continues until collision

is no longer detected.

Q-Adaptive. The probability that a given time slot of FSA will

make a single reply, denoted by q, is given by

q =

(
n

1

)
1

f

(
1 − 1

f

)n−1
(1)

where n is the total number of tags. When the derivative of the

preceding equation is taken, the maximum probability is obtained

qmax = 1/e where f = n. That is, to achieve the maximum reading

rate, the frame length should always be set to the total number of

tags participating in the current frame. The ideal FSA can be de-

signed as follows. (1) f = n is initialized. (2) Each time a tag is

successfully identi�ed, the current frame is terminated and a new

frame starts with f = f −1, such that each slot maintains the max-

imum probability of a successful reply. The frame length is dynam-

ically adjusted; hence, we call the scheme Dynamic FSA (DFSA).

However, the reader does not have a priori knowledge about n. To

address this issue, a COTS reader (i.e., aka Gen2 reader) adopts the

Q-adaptive protocol, which can adaptively estimate n according to

history readings, and is based on an award-punish mechanism. In

particular, the command Query contains a non-negative integer

Q , which indicates the frame length f = 2Q . The reader dynam-

ically increases or decreases Q at the end of each collided slot or

empty slot.

2.2 Theoretical Analysis of Reading Rate

Assume that the frame length can always be adjusted to the opti-

mal value. Howmuch timewill the reader consume in an inventory

round? This question can be reduced into the classical Coupon Col-

lector’s Problem, which states that there are n distinct objects that

are repeatedly drawn (with replacement) from an urn with a proba-

bility of 1/n of picking an object at each trial.What is theminimum

number of trials needed to pick each of the n objects at least once?

We sketch the analysis as follows. When f = n, and thus, the prob-

ability that the ith tag is successfully identi�ed in a given slot is

equal to:

p =
1

n
(1 − 1

n
)n−1 ≈ 1

ne
(2)

Let the random variable F denote the number of slots required

by the reader to collect n tags, and fi denote the length of the ith

frame, 0 ≤ i ≤ n−1, which starts when the ith tag is identi�ed and

ends when the (i + 1)th tag is identi�ed. Thus, n − i tags are yet to

be read in the ith frame, and each of these tags has a probability

p of being read in a time slot. The frame length, fi , is a geometric

random variable with parameter (n − i)p. Thus, when F = f0 +

· · · + fn−1, we obtain

E[F ] =
n−1∑

i=0

E[fi ] =
n−1∑

i=0

1

(n − i)p =
1

p

n∑

i=1

1

i
=

1

p
Hn ≈ neHn (3)

whereHn denotes the nth harmonic number and is given by lnn+

O(1). Therefore,

E[F ] = ne(lnn +O(1)) ≈ ne lnn +O(n) (4)

E[F ] approaches ne lnn time slots for a large value of n, where

each tag can be read once within ne lnn slots.

In addition to the time for collecting tags, each inventory round

will introduce an extra time cost for other necessary tasks, e.g.,

broadcastingSelect, synchronization, and clearing history states.

We call such time consumption as start-up cost, which is denoted

by τ0. Suppose that the mean duration 2 of each slot is equal to τ ,

then the entire inventory cost is de�ned as follows:

Definition 1 (Inventory cost). Inventory cost, denoted byC(n),
is de�ned as the total time consumed on identifying n tags once. It is

given by

C(n) =
{
τ0 + neτ ln(n) if n > 1

τ0 + τ otherwise
(5)

With regards to the inventory cost, IRR is then given by

Λ(n) = 1

τ0 + neτ ln(n)
(6)

This equation provides a fundamental estimation model for cal-

culating the scheduling cost (later used in §5). To the best of our

knowledge, we are the �rst to accurately model the IRR for COTS

RFID system, particularly the impact of start-cost, whichwas never

considered before. Next, we conduct empirical experiments to val-

idate its correctness.

2The actual successful slot is longer than empty and collided slots due to the trans-
mission of EPC. Thus, we use an average approximation.
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Fig. 2: Empirical study on IRR. Gen2 protocol allows upper ap-

plication to set an initial Q as �gure shows. However, the reader

will gradually and automatically adjust the actual Q , making total

inventory time approach optimal.

2.3 Empirical Analysis of Reading Rate

We then practically measure the reading rates of the ImpinJ R420

reader across 1 ∼ 40 Alien tags, with various frequencies (920 ∼
926MHz), including 16 channels. We try di�erent initial settings

of Q in the experiments. For each setting, we repeat the experi-

ment 50 times and report the average value. We also utilize the

least-squares algorithm to estimate the two unknown parameters,

namely, τ0 (19ms) and τ (0.18ms), involved in Eqn. 6. The average

IRR is depicted in Fig. 2. The following two �ndings are obtained

from the studies:

(1) Our theoretical formula for IRR agrees well with the mea-

surement results in terms of the trend, except for a slight di�er-

ence due to the approximation in Eqn. 4. This indicates that the

current anti-collision algorithm, i.e., Q-adaptive, is already a good

algorithm approaching the optimal solution. Thus, current system

leaves very limited room to improve the reading rate by designing

better anti-collision protocols.

(2) IRR is a purely decreasing function of n, i.e., inversely pro-

portional to n ln(n). Speci�cally, as shown in Fig. 2, IRR decreases

from 63Hz to 12Hz (i.e., an 84% drop) when n increases to near

40. This �nding hints that companionate tags would seriously and

negatively a�ect the IRRs of the tags of interest.

2.4 Motivation

We consider the issue of reading rate in real situations where bil-

lions of COTS RFID tags have been deployed and covered by RFID

readers. We can neither change the device settings nor improve

the e�ciency of the current anti-collision protocol. We are not al-

lowed to communicate tags with di�erent frequency channels si-

multaneously (so that reading some tags more faster at one pace

and the others at a slower pace), because tags do not equip with

transceivers and must backscatter their IDs using the same fre-

quency as emitted by the reader. In short, there is no way to apply

frequency division multiple access (i.e., FDMA) in current RFID

systems. With such rigorous rules, how can we improve the IRR of

mobile tags?

Case study. We collect a real reading trace from our previous

tracking system, TrackPoint [30], i.e., a gate composed of three

Fig. 3: Reading trace. An approximately 4 hour real trace ac-

quired by the TrackPoint in which our RFID reader obtained up

to 367, 536 readings from 527 tags.

10
0

10
1

10
2

10
3

10
4

10
5

Reading Times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Fig. 4: Trace distribution. We �nd that 20% of the tags are read

over 205 times, whereas 10% of the tags are read over 655 times.

In fact, each individual tag is supposed to be read about 50 times

when it passes through the TrackPoint.

reader antennas ismounted above the conveyor tomonitormoving

baggage. We expect that each tag can be read 10 times immediately

during it is moved through the device, so as to localize each bag-

gage at a high-precision level. We choose an approximately 4 hour

real trace, as shown in Fig. 3, during which our RFID reader ob-

tained up to 367, 536 readings from 527 tags. We visually observe

that 30 tags (≈ 5.7% tags) at most are simultaneously conveyed

through the TrackPoint each second. However, Tag #271 has been

continuously read 90, 000 times, in that the corresponding tagged

package was placed on the side of the vehicle near to the Track-

Point; it actually stays there without moving. Obviously, the read-

ings of tag #271 are unwanted. Furthermore, we also show the dis-

tribution of reading times in Fig. 4. We �nd that 20% of the tags

are read over 205 times, whereas 10% of the tags are read over 655

times. In fact, each individual tag should be read about 50 times

when it passes through the gate. All these exceptional readings

come from these tags, which are actually not moved on the con-

veyor but have been sorted and stayed nearby TrackPoints. By con-

trast, the real moving tags are typically read less than 5 times when

being moved across the gate, due to the channel contentions from

nearby stationary tags.
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Fig. 5: System architecture. Tagwatch adopts a two-phase read-

ing design, wherein the motion state of each tag is assessed in the

�rst phase and only moving tags are read in the second phase.

In summary, our empirical data suggests that only a few num-

ber of tags from a massive number of tags (e.g., 10%) are concur-

rently moving in practice, and their reading demand are urgent.

Meanwhile, The IRRs of moving tags are seriously a�ected by the

nearby static tags. Thus, reducing the total number of participat-

ing tags in the inventory is a good way of improving the IRR of

mobile tags. This inspire us to revisit IRR from the perspective of

mobility: real-time adjustment of the IRR according to tag’s current

motion state.

3 OVERVIEW

Tagwatch is a middle layer that runs between the reader and upper

applications. It aims to adaptively change the reading rate of tags in

terms of their motion states. As shown in Fig. 5, Tagwatch adopts

a two-phase reading design:

Phase I: Motion assessment. In this phase, Tagwatch reads

all tags within a short period and then leverages the reading re-

sults to assess the motion state of each tag. Afterwards, Tagwatch

selects mobile tags to be scheduled in the next phase according to

the history-based immobility models.

Phase II: Target schedule. In this phase, Tagwatch �rst selects

a group of bitmasks to cover target tags (e.g.,mobile tags) and then

conducts bitmask-enabled selective reading on target tags for a rel-

atively long period.

The two phases constitute a basic cycle, which occurs alterna-

tively and periodically as shown in Fig. 6. The scheduling phase

is longer than the assessment phase, which guarantees target tags

gain su�cient time to be read for several cycles. A periodical mo-

tion assessment is necessary to capture the state transitions of tags

(e.g., from amoving state to a static state, or vice versa). Target tags

are read for a longer period, and thus, their average IRRs are higher

than those of other tags. Regardless of the phase in which tags are

read, all readings should be delivered to upper applications and

contribute to the history database.

Scope. Our system is driven by the assumption that quite small

percent of tags are moving in a moment. It is possible that Tag-

watch cannot obviously improve IRRs for mobile tags if the per-

cent is over than a threshold (e.g., > 20%). Keep in mind that as our

baseline is to read all tags, it is easy for us to switch back to the old

fashion (i.e., reading them all) when the assumption does not hold

true.

Assessment Scheduling Assessment Scheduling· · · · · ·

Bitmask 1 Filter 1· · ·

1st cycle nth cycle

Query QueryBitmask k

Fig. 6: Reading cycles. Each reading cycle is composed of two

phase and occurs alternatively and periodically.

4 PHASE I: MOTION ASSESSMENT

This section discusses the �rst phase, wherein all the tags are con-

tinuously read once. The purpose of this phase is to identify all

mobile tags.

4.1 Modeling Tag’s Immobility

To determine which tags are moving, we utilize the physical RF sig-

nals of tags. The reading result of a tag contains two basic physical

metrics, RF strength and phase. Most COTS RFID systems support

milli-degree resolution in detecting RF phase (i.e., hypersensitive

to the movement of the tag), thus, we adopt the RF phase as a main

measurement for motion detection.

Challenges. The naive method of perceiving the motion of a

tag is to compare its incoming RF phase with the last one. If the

two phases are same, then the tag is determined to be static; other-

wise, it is inmotion. However, suchmethod su�ers from a high rate

of false positives because of the following reasons. (1) The phase es-

timate is derived from the received signal where the thermal noise

from reader receiver is always present, thereby leading to measure-

ment errors. (2) The RF signal propagation does not only occur

along the direct path, i.e., line of sight (LOS), but also re�ected by

surrounding objects (particularly mobile objects). This phenome-

non is known as the multipath e�ect. The �nal signal received at

the receiver is a superposition of multiple copies of the original

signals from all paths. Even if the original tag remains stationary,

the movements of surrounding objects will create or cancel multi-

path propositions, thereby resulting in signi�cant jumps of the RF

phase.

Gaussian model. A number of prior empirical works [30, 32]

have shown that the RF phase measurement results contain ran-

dom errors, following a typical Gaussian distribution. Thus, we

consider the phase measurement for each tag in the scene as a

Gaussian random variable instead of an accurate value. Assume

that we currently have them RF phase values, i.e., {θ1,θ2, · · · ,θm }
for a particular tag. Then the incoming new phase θm+1 should fol-

low a Gaussian model, i.e.,

θm+1 ∼ N(µm ,δm ) (7)

where µm and δm are the expectation and the standard deviation

that estimated through the history readings as follows.

µm =
1

m

m∑

i=1

θi and δm =

√√
1

m

m∑

i=1

(θi − µm )2 (8)

If the tag’s position remains unchanged, the incoming RF phase

θm+1 should follow the above Gaussian model, whose probability
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Fig. 7: Mixed Gaussian model. (a) An example showing how a

surrounding mobile object a�ects the �nal RF signal. (b) The �nal

RF signal received by the reader in three cases.

density function is given by

η(θm , µm ,δm ) = 1

δm
√
2π

exp

(
−(θm − µm )2

2σ 2
m

)
(9)

Initially, we assume all the tags are in motion (i.e., µ0 = 0 and θ0 =

0) and then immediately learn their immobility. Correspondingly,

a tag is static if the incoming phase value matches the Gaussian

model, i.e., |θm+1−µm | < ξδm where ξ is a user-de�ned parameter.

Gaussian Mixture Model (GMM). RF phase is known for its

sensitivity to the motion of a tag but notorious for being too ex-

cessively sensitive to the movements of surrounding objects due

to the multipath e�ect. Fig. 7(a) illustrates a toy example in which

a person walks by a pair of reader and tag. Two constant signal

propagations are available: s1 and s2. By default, the �nal signal

received by the reader is s1 + s2, as shown in Fig. 7(b). When the

person passes by position A and B, he/she respectively introduces

two new propagations, s3 and s4, causing the �nal signal to jump

from s1+s2 to s1+s2+s3 and s1+s2+s4. Evidently, single Gaussian

model fails to depict such jumps, producing two false positives.

We can divide a space into many Fresnel zones for every λ/2
given a wavelength of λ, as shown in Fig. 7(a). Let R and T be a

pair of reader and tag. The Fresnel zones contains K ellipses can

be constructed as follows:

|RQk | + |QkT | − |RT | = kλ/2 (10)

where Qk is a point on the kth ellipse. The preceding equation

indicates the distance from points on the ellipse to two foci is

kλ/2 longer than the distance between the transmitter and receiver.

The innermost ellipse is de�ned as the �rst Fresnel zone, and the

kth Fresnel zone corresponds to the elliptical annuli between the
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Fig. 8: Use of GMM to model the immobility of a tag.

(k − 1)th and the kth ellipse. Clearly, the re�ections caused by the

objects located at odd zones superimposes LOS signal in phase,

whereas the superpositions with re�ections from even zones are

out of phase. The previous research [11, 24] shows that the signi�-

cant zones for RF transmission are the �rst 3 ∼ 8 zones, more than

70% of the energy is transferred via the �rst Fresnel zone.

The Fresnel zone model 3 inspires us to re-build the immobil-

ity of a tag using multiple Gaussian models, i.e., Gaussian mix-

ture model (GMM), wherein each combined propagation (i.e., mul-

tipath) result corresponds to aGaussianmodel. As shown in Fig. 7(b),

three Gaussian models exist for the RF phase: ∠(s1+s2), ∠(s1+s2+
s3) and ∠(s1 + s2 + s4). Fig. 8 shows the distribution of the phase

values collected from a stationary tag in a dynamic environment

(i.e., asking a person to work around.). The value of the RF phase

follows a group of Gaussians models instead of a single model. In

particular, suppose we have learned K Gaussian models, denoted

by {N1(µ1,m ,δ1,m ), . . . ,NK (µK,m ,δK,m )}, for a particular station-
ary tag. During detection, the best matched Gaussian model (e.g.,

k ′-th) is chosen to depict the current immobility of a tag. The de-

termining rule is thereby updated to |θm+1 − µk ′,m | < ξδk ′,m .

4.2 Self-learning Motion Detection

Self-learning motion detection based on GMM is illustrated. First,

K Gaussian models are assigned an initial large deviation δk and

low prior weightwk . These K Gaussian models are ordered by the

priority of rk = wk/δk , because a Gaussian model with a high

weight but a small deviation is preferred. The Gaussianmodel with

the lowest priority will be gradually eliminated.

Algorithm.Webuild a stack of Gaussianmodels for each tag in-

dependently. On the incoming reading, a new RF phase value θm+1
is provided. The Gaussian model is “matched” if θm+1 is within ξ×
standard deviation of the Gaussian model, i.e., |θn+1 − µk | < ξδk .

We search for the �rst matched model from top to down in terms

of priority. Then one of the following two cases is observed:

• Case 1: If a match is found with one of the K Gaussian mod-

els in the stack, then the tag is classi�ed as stationary. Correspond-

ingly, we increase the weight of this model, adjust its mean closer

3Note we apply Fresnel theory to explain why we use GMM to build the immobility
of a tag. Finding Fresnel zones is unnecessary because our detection algorithm is self-
learning and adaptive to changes in the environment.
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to θm+1, and decrease the variance as follows:




wk,m+1 = (1 − α) ×wk,m + α

µk,m+1 = (1 − ρ)µk,m + ρθm+1
δk,m+1 =

√
(1 − ρ)δ2

k,m
+ ρ(θm+1 − µm+1)2

(11)

where α is a learning rate and ρ = αη(θm+1, µm ,δn )4. For the un-
matched models, we maintain their mean and deviation, but de-

crease their weights towk,m+1 = (1 − α)wk,m .

• Case 2: A match is not found with any of the K Gaussian

models. In this case, the tag is classi�ed as being in motion. A new

model with µk,m+1 = θm+1, a large δk,m+1 (e.g., 2π ) and a small

wk,m+1 (e.g., 0.0001) is pushed on to the stack, or replace the model

with least priority if the stack is full.

4.3 Discussions

In terms of the above self-learning algorithm, it is worth noting

the following questions:

Why do we model immobility? Tagwatch models the immo-

bility of a tag instead of its mobility because potential moving

states are too many to prede�ne. The “self-learning” behaves in

two aspects: �rst, any surrounding object will contribute to the

building of Gaussian models regardless of their components or

shapes. The learned model can be used for future multipath propa-

gation as long as the tags remain in their positions. Second, when

a tag moves from one place to another (i.e., state transition), the

priorities of its outdated immobility models built for previous posi-

tions will be gradually reduced until they are completely removed

from the stack.

When do we learn Gaussian models?Without need of a par-

ticular pre-learning o�ine, Tagwatch is able to quickly accommo-

date the in�uence of a new multipath (i.e., due to changes of envi-

ronment) online. For example, suppose a new surrounding object

comes into the scene, which introduce a new unknown multipath,

the stationary tag is mistakenly considered as being in motion in

Phase I because none of its learned models can match this new re-

sulted phase value. Then it will be scheduled to be intensively read

in the Phase II. The system leverages all recent history readings of

the tag including those collected in Phase II, to build its immobility

models. In this way, the newly emerged Gaussian model is quickly

learned after one cycle (e.g., 3 ∼ 5s , see §7). When entering the

next cycle, the incoming phase can match the learned model and

the tag will be correctly classi�ed as being stationary. Thus, our

algorithm does not have a “cold start”.

How to deal with highly dynamic environment? As we

aforementioned, anymotion of a surrounding objectmovingwithin

a same Fresnel zone creates an equivalent propagation (i.e., dis-

tance from the reader to tag passing through the object is equal.),

leading to a same Gaussian model. Thus, the number of multi-

pathes are relatively limited. If the system has learned all immo-

bility models incurred by all potential multipathes, it could deal

with any interferences from surrounding objects whatever how fre-

quently the environment changes. Thus, the current self-learning

algorithm is immune to highly dynamical changes of environment.

4η(·) refers to Eqn. 9. wk,m , µk,m and δk,m respectively denote the weight, expec-

tation, and standard deviation in themth iteration of the k th Gaussian model.

How to deal with phase jumps? It is known that the phase

value θ = (4πd/λ + θ0) mod 2π where λ, d and θ0 are wavelength,

distance between reader and tag, and initial phase. Due to the oper-

ator mod, if the expected value µ is around 0 (e.g., 0.02), the mea-

sured one θ̃ may �ip to a value close to 2π (e.g., 2π−0.01), resulting
in |θ̃ − µ | > ξδ (e.g., |2π − 0.01 − 0.02| = 6.2532 > 3 × 0.1). Actu-

ally, the measured value is very close to the expected. This prob-

lem emerges because phase values are represented in the base-2π

system. To resolve this issue, we would apply the minimum dis-

tance for the di�erence detection in practice. The minimum dis-

tance equals |θ1−θ2 | if |θ1−θ2 | ≤ π , otherwise equals (2π−|θ1−θ2 |),
e.g., 2π − |2π − 0.01 − 0.02| = 0.03 < 3 × 0.1.

How to deal with reading exceptions?We do not assume all

tags are always within the range to the reader throughout. Tags

are allowed to come in, go out or be temporarily blocked any time.

The system independently creates Gaussian models for each tag. If

one tag leaves for a long while, the system will remove its models

for saving memory. On contrary, the system immediately creates

a Gaussian model stack for any newly emerging tags. If a new tag

happens to come in the Phase II, the systemwill read it in the Phase

I of next cycle. There may exist a very extreme case that the tag

happens to move into the range every Phase II and move out every

Phase I, making the system blind to it. As this tag is de�nitely a mo-

bile one, we can add its EPC to the con�guration �le, as described

in next section.

5 PHASE II: TARGET SCHEDULE

In addition to system-determined mobile tags, Tagwatch also al-

lows user to de�ne tags with signi�cant concerns in a con�gura-

tion �le. These tags will be scheduled for reading regardless of

whether they are in motion or stationary. We call these tags, in-

cluding mobile or concerned tags, targets or target tags. Then, the

question becomes: how can we exclusively read target tags with

existences of a large number of stationary tags? In this work, we

leverage a widely-supported Gen2 command, i.e., Select, to se-

lectively read target tags.

5.1 Selective Reading

The EPC Gen2 air protocol is the most competitive standard that

governs RFID systemsworldwide. ISO has rati�ed it as a part of the

ISO/IEC 18000 series. Gen2 speci�es an important mandatory com-

mand, i.e., Select, for selective reading. Each inventory round

starts with a Select command. This command is designed to se-

lect a subset of those tags that will participate in the upcoming

inventory round. The Select command contains six mandatory

�elds and one optional �eld. The present study focus on four �elds:

MemBank, Pointer, Length and Mask. These �elds work to-

gether to indicate a selection condition called bitmask. In partic-

ular, (1) Gen2 divides the tag memory space into four banks for

storing password, EPC, TID and customized data. The MemBank

�eld speci�es the memory bank to which the Mask will be com-

pared with. In our system, the MemBank is constantly set to the

second bank (i.e., the EPC bank). (2) The Mask �eld contains a bit

string for comparison. (3) The Pointer �eld speci�es the start-

ing address (i.e., bit number) of the chosen memory bank. (4) The
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Fig. 9: An example of bitmask selection. (a) Bitmasks

S1(102, 5, 2) and S2(112, 3, 2) completely cover three target tags.

However, S1 mistakenly covers a non-target tag 1101102. (b) Bit-

masks S1(112, 3, 2) and S2(012, 1, 2) cover three target tags without
non-target tags.

Length �eld speci�es the length of theMask used for the compar-

ison. For example, if MemBank = 1, Mask = 01012, Pointer = 2

and Length = 4, then we select the tags whose bit string starting

from 3rd bit and ending at (3+4)th bit of theEPC equals 01012. The

tags are divided into two groups: tags that match the bitmask and

tags that do not match the bitmask. We only allow the matching

tags to respond the query commands (i.e., Query) in the subse-

quent inventory round.

5.2 Bitmask Selection

Suppose that n′ target tags from a total n tags (i.e., n′ ≤ n) are de-

livered for selective reading in the second phase. We do not make

any assumption on the distribution of the EPCs of target tags as

well as those of target tags. Any tag can be our target for sched-

uling. Our task is to seek appropriate bitmasks to cover n′ target
tags.

Challenges. The search for appropriate bitmasks is non-trivial,

and two challenges are encountered. First, a single bitmask is likely

unable to cover all target tags inmost of time. As shown in Fig. 9(a),

no common bitmask can concurrently cover the three target tags.

We have to choose a group of bitmasks to cover these targets and

then perform multiple rounds of selective reading. For simplicity,

we use S(m,p, l) to denote a bitmask with a Maskm, a Point p,

and a Length l . The MemBank �eld is omitted because this �eld

is �xed to the EPC memory. For example, we select S1(102, 4, 2)
to cover 0011102 and 0100102 whereas S2(112, 2, 2) for 1011002, as
shown in Fig. 9(a). (· · · )2 denotes that the number is represented

in a binary form. However, such selections are not good because

the selected bitmask S1 collaterally covers a non-target tag with

EPC of 1101102. Thus, the second challenge is to achieve the opti-

mal selection, which can cover all targets and the least non-targets.

For example, the second selection (i.e., S1(112, 2, 2) and S2(012, 0, 2))
shown in Fig. 9(b) is optimal, which covers three targets without

any non-targets.

Naive solution. The naive method directly uses the n′ EPCs
of target tags as n′ bitmasks, such that all target tags are covered

without including any non-target tag. Therefore, we must start n′

rounds of inventory rounds with n′ Select commands. Each in-

ventory round introduces a start-up cost, which a�ects IRRs. The

optimal strategy is to obtain full coverage on target tags with mini-

mum total time cost.We can consider the naivemethod as theworst

case. The cost-e�ective selectionmay collaterally involve non-target

tags as long as their cost is less than in the worst case. We reduce

this problem into the set cover problem. Before introducing our algo-

rithm, we describe the set cover problem and subsequently de�ne

its relation to the bitmask selection problem.

Classical set cover optimizationproblem.The set cover prob-

lem involves selecting a minimum number of sets that contain

all the elements in any of the sets in the input. Set cover opti-

mization requires the total cost of the selected sets to be minimal,

where each set is assigned a cost. A universal U and a family of

S = {S1, S2, . . . , SM } of subset ofU. Correspondingly, each subset

has a weight, denoted by {c1, c2, . . . , cM }. The objective is to �nd a
group of subsets I ⊆ S, such that minimizing

∑
Si ∈I ci subjecting

to ∪Si ∈ISi = U.

Bitmask selection as set covering. Within our problem do-

main, the universal set U contains the EPCs of n′ target tags, i.e.,
U = {EPC1,EPC2, . . . ,EPCn′}. Each bitmask corresponds to a

subset ⊆ U, which contains all EPCs covered by the bitmask. Thus,

we use a bitmask to denote tag set that it covers. To determine

the number of bitmasks (or subsets) do we have, let L be the bit

length of the EPC number (e.g., 96 or 128 bits). The bitmasks can

be set with di�erent starting addresses and lengths, hence, we have∑L
l=1

(L−l+1)2l = 2L+2−2L−4 candidate bitmasks in global space.

The equation obtains a possible bitmask by sliding a mask from the

�rst position to the last for each length l . For example, If L = 96,

then 3.1691 × 1029 candidate bitmasks (or subsets) are available,

which is too large to be accepted. We only focus on n′ target tags
rather than on the entire EPC number space. Therefore, the ma-

jority of the subset induced by the global bitmasks are empty, i.e.,

containing none targets. The candidate bitmask Si is selected only

when it can cover a target tag. Thus, the actual total number of

candidate bitmasks is equal to
∑L
l=1

(L − l + 1)n′ = n′L(L + 1)/2.
n′ should be small. Thus, the candidates are controllable. Let Si
denote a bitmask and the tag set that it covers. Then, |Si | is the
number of tags covered by this bitmask. The time cost to collect

the tags covered by Si can be approximated toC(|Si |), as indicated
in De�nition. 1. Therefore, our problem can be written as the fol-

lowing optimization formula:

minimize
∑

Si ∈I
C(|Si |)

subject to U ⊆ ⋃

Si ∈I
Si

(12)
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Fig. 10: An example of bitmask selection. (a) The pre-built in-

dexed table over four tags in the scene. (b) An execution of the

search algorithm, where the input indicator bitmap is equal to

[0, 1, 1, 1]. Finally, S3 and S4 are selected.

We reverse the subject condition because the Si may contain non-

target tags. At �rst glance, we should select a group of bitmasks

purely covering all target tags without non-target tags. Such strat-

egy may not be optimal because it may require excessive bitmasks

to achieve its purpose. Consequently, start-up cost is increased,

which leads to higher total cost. In addition, the worst cost is al-

ways equal to C(n′) when taking n′ inventory rounds that use

EPCs of target tags as bitmasks. If the cost of “optimal” selection

is higher than C(n′), we should adopt the worst option.

5.3 Bitmask based Schedule

Set cover optimization is an NP-hard problem. Thus we design a

greedy algorithm to search for bitmask selection.

Preprocessing. Before searching, we build an index table to as-

sociate candidate bitmaskswith currentEPCs, as shown in Fig. 10(a).

We arrange all the current tags, including target and non-target

tags, based on their EPC values. The left column of the table is

an indicator bitmap that shows whether the tag is covered by the

right bitmask. For example, V1 = [1, 1, 1, 0] because the �rst three
EPCs of the tags are covered by the bitmask of S1(02, 0, 1). We tra-

verse all possible bitmasks and generate the corresponding indi-

cator bitmaps that involves all the tags in the scene. We abandon

the rows with zero indicators, which do not cover any tag. We also

merge the rows whose indicator bitmaps are identical by randomly

using one of them because the coverage ranges of these bitmasks

are equal. When the indexed table is built, only an incremental up-

date is required, i.e., deleting outgoing tags or adding new ones at

the end of the assessment phase.

Searching for optimal bitmasks. Tagwatch uses an iterative

searching algorithm. An input indicator bitmapV shows the target

tags that should be covered. Each iteration involves the following

steps:

5This indexed table only considers the bitmasks starting from the �rst bit due to space
limit. The actual table is larger than this one.

Bitmask

MemBank

Pointer

Mask

Length

1st bitmask

2nd bitmask

3rd bitmask

Fig. 11: An example of ROSpec. This spec de�nes three bit-

masks for scheduling.

• (Step 1) The relative gain for each bitmask is calculated. The

relative gain R(Si ) for the bitmask Si is de�ned by:

R(Si ) =
|Vi&V |
C(|Vi |)

(13)

where |Vi&V | is the cardinality of the result of a bitwise “AND” on
two bitmaps. It denotes the number of target tags that can be cov-

ered using Si , and is considered as the absolute gain of Si . C(|Vi |)
is the inventory cost if Si is used for the selective reading, i.e., in-

ventory cost for reading |Vi | tags. This cost is considered as the

bitmask price.

• (Step 2) The bitmask with the highest relative gain is selected.

We expect the selected bitmask to identify more target tags with

less price (i.e., covering less non-target tags.). A draw can be re-

solved by random selection.

• (Step 3) The input indicator bitmap is updated. Suppose we se-

lect the jth bitmask in Step 2, then V = V − (V&Vj ), i.e., the new
input bitmap is changed to indicate the target tags that are not

covered in this iteration.

• (Step 4) Return to Step 1 for the next iteration. The search pro-

cess is terminated when V = 0.

A search example is provided in Fig. 10(b) where the original

input indicator bitmap V = [0, 1, 1, 1], i.e., the last three tags are

target whereas the �rst tag is non-target tag. In the �rst iteration,

R(S1) = 2/(τ0 + 3τe ln 3) because two common “1” s are between

V and V1 (i.e., gain is equal to 2.), and a total of three tags must be

collected (i.e., inventory cost is equal to τ0+3τe ln 3). At the end of

the �rst iteration, we select bitmask S3 because it has the highest

relative gain compared among all the bitmasks. Then, we update

V = V − (V&V3) = [0, 0, 0, 1] as the input of the second iteration

and select S4 for the second bitmask. After the second iteration,

V = 0 and the search process is terminated.

6 IMPLEMENTATION

We adopt the ImpinJ Speedway R420 reader [2] without making

any hardware or software modi�cation. The reader is compatible

with EPC Gen2 standard. Four reader antennas with circular polar-

izations are used to provide a gain of 8dB in two directions. Four
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types of tags fromAlien Corporation [1] are used.We adopt the Im-

pinJ LLRP Tool Kit (LTK) to communicate with the reader. LLRP [8]

is another protocol speci�ed by EPCglobal that works with Gen2.

It is designed to deliver Gen2 parameters from a client to a reader.

Prototype with LLRP. LLRP speci�es reader operation using

ROSpec, which is an XML document that encapsulates parame-

ters of selective reading (e.g.,MemBank,Pointer,Mask,Length,

etc). Fig. 11 shows a typicalROSpec, where three bitmasks are con-

�gured for three selective readings. Each ROSpec is composed of

several AISpecs, each of which is used for an antenna setting.

An AISpec consists of more than one C1G2Filters. The �lters

function as the bitmasks. We can set multiple bitmasks by adding

multiple C1G2Filters or multiple AISpecs. We adopt the sec-

ond method by default. After receiving a ROSpec, the reader se-

quentially starts selective reading.

Parameter choice. Tagwatch has several parameters. The key

parameters are employed as follows. (1) Reading model: we utilize

the least square method to estimate τ0 and τ for the inventory cost

(refer to Eqn. 5) by conducting the empirical experiments. Conse-

quently, practical τ0 = 19ms and τ = 0.18ms . (2) Cycle length: all

tags are allowed to be read once in the �rst phase, thereby the inter-

val of Phase I dynamically depends on the total number of tags. We

�x the length of Phase II to 5 seconds. The upper applications can

adjust the length of Phase II according to their requirements. (3)

For motion detection, the learning rate α , the number of Gaussian

models K and the threshold ξ are set to 0.001, 8 and 3.0, respec-

tively, by default.

7 EVALUATION

We start a few experiments that provide insight into the operation

of the system. We evaluate the performance of the two phases in

detail in the following sections.

7.1 Evaluation of Phase I

The performance of the motion assessment that occurred in the

�rst phase is �rst evaluated.We focus on accurately detectingmove-

ments with a low false positive rate in a timely manner. To rep-

resent false positives, we deploy 100 stationary tags in our o�ce.

Approximately 10 individuals work in the room. These people will

introduce additionalmultipath propositionswhen approaching the

tags. We monitor these stationary tags for 48 hours using a reader

and collect over 2 million readings. The trace is used as the input

to build the immobility model of each tag and to test for false pos-

itive rates. To measure the actual positive rate (i.e., accuracy),we

attach a tag on a toy train that moves along an oval track with a

radius of 20cm at a constant speed of 0.7m/s . All the readings are
considered collected from a mobile tag.

Detection Accuracy. Firstly, we investigate the detection ac-

curacy. We present accuracy using the Receiver Operating Char-

acteristic (ROC) curve, which is composed of True Positive Rate

(TPR) and False Positive Rate (FPR). We obtain pairs of TPR and

FPR by adjusting the detection threshold (e.g., ξ in Tagwatch). For

comparison, we also use three other methods for baselines. Fig. 12

presents the ROC results, where Phase/RSS-di�erencing is the naive

method that simply compares the incoming RF phase/RSS with the

last value. Phase/RSS-MoG utilizes the MoG (Mixture of Gaussian)

of phase/RSS to model the immobility of a tag. Consequently, both

RF phase-based detection techniques are better than RSS-based

methods. In particular, given a FPR of 0.2, Phase-MoG and Phase-

di�erencing achieve 0.99 above TPRs, whereas RSS-MoG and RSS-

di�erencing achieve only 0.53 and 0.12 TPRs, respectively. The RF

phase is more sensitive to the motion than RSS.Thus, using phase

as a motion indicator is superior to using RSS. However, regardless

of which physical indicator (e.g., RF phase or RSS) is used, MoG-

based approaches can always control FPRs at a relatively accept-

able level compared with di�erencing. These results show that the

multipath e�ect signi�cantly in�uences the �nal received backscat-

ter signals, and MoG e�ectively depicts this dynamic nature. For

example, we can �nd an appropriate detection threshold to achieve

≥ 0.95 TPR while ≤ 0.1 FPR using Phase-MoG.

Detection Sensitivity. Second, we further study the sensitivity

of Tagwatch to motion. Our objective is the timely and accurate

monitoring of tag movement, even if its displacement is minimal.

During this stage, we move a tag away in a random direction with

a displacement ranging from 1cm ∼ 5cm. We conduct the experi-

ment 20 times with the same displacement setting. We apply the

successful detection rate, i.e., the ratio of the number of successful

detections to the total test times as a metric to evaluate sensitivity.

Fig. 13 presents the results compared with the results of the RSS-

based method. The �gure shows that we can successfully detect

87% and 99% of the movement events using RF phase when the tag

is moved away from 2cm and 3cm, whereas only 9% and %18 of the

events are detected using RSS. Even when the tag is moved away

to 5cm (≈ 1/4 wavelength), the RSS-based method achieves a 76%

successful rate. In theory, phase value is proportional to twice the
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distance between the reader and the tag. Thus, when a 1cm dis-

placement is introduced, an actual change in distance of 2cm will

occur with regard to the RF phase. These characteristics provide a

natural ampli�er for the RF phase, thereby making it sensitive to

movements.

Learning curve. Third, we conduct a group of experiments to

answer the question: how long does the system need to build a sta-

ble Gaussian model? It seems like the system requires a “slow” and

“cold” start. In the experiments, we keep a tag stationary and let a

person work around. Total one minute readings are collected. We

model the tag’s immobility using the �rst 10ms , 20ms , 30ms , · · · ,
and 10, 000ms trace data respectively, and then investigate the de-

tection accuracy using the subsequent 100ms trace as test data. We

say the system conducts a correct detection when the test reading

matches one of the immobility Gaussian models. Fig. 14 shows the

detection accuracy as a function of time. It suggests that we can

achieve 70% and 90% of detection accuracy when fed with 1.49s

trace (i.e., including 67 readings) and 2.9s trace (i.e., including 130

readings). Therefore, one-cycle readings (i.e., 5s) are su�cient to

stably create a newly emerging Gaussianmodel, providing a “quick

start” for the self-learning.

7.2 Evaluation of Phase II

To understand how Tagwatch operates in the second phase, we

deploy a total of 4×40 tags with random EPCs within the ranges of

4 reader antennas (i.e., each antenna covers 40 tags). In addition, we

use the con�guration �le to directly label target tags to eliminate

the in�uence from the �rst phase. IRR is used as the metric (i.e.,

Hz). Each experiment with the same setting is repeated 50 times,

and the average result is reported.

Schedule Feasibility. To make an intuitive understanding of

the scheduling, we show two speci�c examples in Fig. 15 and Fig. 16,

where 2 and 5 tags out of total 40 tags are selected as our targets. In

the �gure, each tag is associated with three bars that correspond to

the IRRs using reading all, Tagwatch, and naive rate-adaptive solu-

tion (which simply selects targets’ EPCs as bitmasks). From Fig. 15,

we observe that the mean IRRs of the targets (i.e., tag #1 and #2)

are approximately 13Hz in the solution of reading all. By contrast,

if Tagwatch is applied, the IRRs of the targets will increase by 261%

(i.e., from 13Hz to 47Hz), which is thrice higher than in “all read-

ing”. Naive solution also gives 83% of increment (i.e., from 13Hz

to 24Hz). Meanwhile, the IRRs of non-targets drop to zero (note

that we focus on the performance of Phase II; thus, the calculation

rate excludes the readings obtained in Phase I.). From Fig. 16, the

similar results are observed except two points: �rst, tag #9 and #30

are collaterally involved into Phase II. Even so, Tagwatch still of-

fers 120% of increment to target tags. Second, the IRRs that naive

solution obtained is even lower than that of reading all, because its

cost have counteracted its gain. More discussions about IRR will be

introduced in the overall evaluation. These two experiments vali-

date that it is completely feasible and e�ective to perform selective

reading through bitmask enabled selection.

Schedule Cost. Tagwatch introduces extra time cost on the

functions of motion assessment and bitmask selection, i.e., the in-

terval during the end of Phase I and the start of Phase II. This extra

time cost may a�ect the real-time of the system. We slice these ex-

tra time consumption from 50, 000 cycles, by calculating the time

di�erence between the �rst reading in Phase II and the last reading

in Phase I for each cycle. The CDF of time is illustrated in Fig. 17.

We �nd our additional functions introduce less than 4ms in the

50% of cycles, and 6ms in the 90% of cycles. Compared with the 5

seconds of each cycle, such extra consumption can be ignored.

7.3 Overall Evaluation

Finally, we present the overall performance of Tagwatch, includ-

ing two phase readings, by studying the IRR gain and a tracking

application.

IRR Gain. We evaluate the overall performance through the

IRRs of mobile tags.We de�ned IRR gain as the average ratio of IRR

obtained by rate-adaptive reading to the IRR obtained by reading

all. We present IRR gains with respect to the percent of mobile tags,

as shown in Fig. 18. In the �gure, we compare two rate-adaptive

solutions: one is our Tagwatch, while another is the naive solution

that directly uses mobile tags’ EPCs as bitmasks for selective read-

ing. The results of two solutions are plotted in a pair considering

a same percent of mobile tags. For each percent, we vary the total

number of tags to 50, 100, 200, 300 and 400, and perform 1, 000-

cycle reading for each setting. All mobile tags are put on a spinning

turntable. From the �gure, we have the following �ndings:

• First, when 5% of tags aremoving, Tagwatch can improve their

IRRs by 3.2× in 50% of trials and by 4× in 10% of trials. Naive solu-

tion can also achieve a gain of 2.6× onmedian. This result suggests

that any kind of adaptive-reading solutions can bring e�ciency

bene�ts when a few mobile tags exist.

• Second, when 10% of tags are moving, the IRR gain that Tag-

watch achieves has a median of 1.9× with a standard deviation of
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Fig. 18: IRR gain. This �gures shows the IRR gains of adaptive-

reading in terms of di�erent percents of mobile tags.

0.29×. In particular, it can achieve a gain of 2.3× in 10% of trials.

This result suggests that the IRR gain decreases as the percent of

mobile tags increases, because more tags participate in the Phase

II, making the contention more intense amongmobile tags. By con-

trast, the IRR gain of naive solution is up to 1.5×. Clearly the algo-

rithm of bitmask selection used in Tagwatch is superior to broad-

casting all.

•Third, when the percent reaches 20%, the IRR gain of Tagwatch

is getting close to 1 (e.g., 1.5× on average), which means nothing

improved. In particular, naive solution has a median gain of 0.8×,
namely, the actual IRR is lower than that of reading all. Because

too much Select commands are broadcasted in Phase II, which

totally counteracts its gain.

In summary, adaptive reading is completely logical when the

mobile tags are a minority (e.g., < 20%). It would provide nearly

4× gain without modi�cation on �rmware or hardware, which was

hardly achieved in prior work. However, as any scheduling will

introduce additional cost to start-up and collateral tags, it should

notice that the cost may counteract its gains when there are a large

number of mobile tags (e.g., > 20%). In such situation, we should

simply switch back to the old fashion: reading them one by one.

Application Study. Finally, we take the tracking of mobile tags

as an application to study the �nal e�ect of Tagwatch. In the scene,

we deploy four antennas around the surveillance region at the

points of (±5m, ±5m). We attach a tag on a mobile toy train and al-

low it to move along a circular track. The trajectories are recovered

using our prior tracking solution [30], namely Di�erential Aug-

mented Hologram. The experiments are conducted in three di�er-

ent cases: (1 + 0) (# of mobile tags + # of stationary tags), (1 + 2)
and (1+4) . We �x the initial position at a known point to improve

comparison. The �nal results are shown in Fig. 1. Without using

Tagwatch, the mean accuracy deteriorates from 1.8 ± 0.72cm in

case (1 + 0) to 6cm ± 3.55cm in case (1 + 2) and 10.6 ± 5.46cm in

case (1+4) due to the channel competition from the stationary tags.

By contrast, the mean tracking accuracy remains at 3.34 ± 1.42cm

with rate-adaptive reading even when four interfered stationary

tags are placed beside the track. The minimal accuracy loss comes

from the apportioned readings in the �rst phase. Thus, this appli-

cation study shows that Tagwatch can exactly identify the mobile

tag as well as adaptively read it.

8 RELATEDWORK

A variety of works have been proposed to improve reading rate

from two layers. Actually, Tagwatch can work with any of the fol-

lowing designs.

Physical layer study. The �rst group of studies aims to trans-

mit RFID tags in parallel and separate collided transmission in the

physical layer. For example, Buzz [26] decodes tag collisions bit by

bit. It assumes the linear combination of the static channel coe�-

cients of re�ecting tags independent of coexisting tags. It cannot

apply to moving tags which change their coe�cients every second.

The linear additional-based scheme proposed in [23] also holds

the same assumption. BST [12] enables concurrent transmission by

leveraging intra-bit multiplexing of on-o� keying signals. It detects

signal edges when the distances between consecutive symbols ex-

ceed a prede�ned threshold. BiGroup [21] recovers collisions with-

out modifying COTS tags, but instead, changes the readers. Other

designs [3, 5, 16] also recover the collisions of up to two concurrent

tags using prede�ned preambles and stringent tag synchronization.

In [14] and [18],orthogonal codes for RN16 are designed for colli-

sion recovery.

Link layer study. The second group of studies aims to design

considerably e�cient anti-collision protocols in the link layer [17].

RFID tags rely on the centralized schedule of readers to avoid tag

collisions. For example, [19] and [33] propose schemes based on

frequency division multiple access and space division multiple ac-

cess, respectively. Time divisionmultiple access (TDMA) protocols

constitute the largest group of anti-collision protocols [4, 7, 15, 28],

most of which are variants of DFSA, such as Q-adaptive. Many

works have also proposed tree-based protocols [6], which are also

a category of TDMA protocols. These protocols operate by split-

ting responding tags into multiple subsets using a random number

generator. In [13] basic tree splitting is presented. In [20] and [6]

adaptive binary tree splitting, which dynamically adjusts the tree

based on collision history, is proposed.

9 CONCLUSION

In this work, we present Tagwatch for the rate-adaptive reading of

mobile tags through selective reading. A key innovation is the two-

phase reading design, in which mobile tags are read for a relatively

long time in the second phase, without competition from station-

ary tags, thereby improving their IRRs at a signi�cant level. The

Tagwatch system has not only been tested and used in practical

applications, but will also open a wide range of exciting opportu-

nities.
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