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Abstract—In recent years, both the RFID and computer vision
technologies have been widely employed in indoor scenarios
aimed at different goals while faced with respective limitations.
For example, the RFID-based EAS system is useful in quickly
identifying tagged objects but the accompanying false alarm
problem is troublesome and hard to tackle with except that the
accurate trajectory of the target tag can be easily acquired. On
the other side, the CV system performs fairly well in tracking
multiple moving objects precisely while finding it difficult to
screen out the specific target among them. To overcome the above
limitations, we present TagVision, a hybrid RFID and computer
vision system for fine-grained localization and tracking of tagged
objects. A fusion algorithm is proposed to organically combine
the position information given by the CV subsystem, and phase
data output by the RFID subsystem. In addition, we employ the
probabilistic model to eliminate the measurement error caused
by thermal noise and device diversity. We have implemented
TagVision with COTS camera and RFID devices and evaluated
it extensively in our lab environment. Experimental results show
that TagVision can achieve 98% blob matching accuracy and
10.33mm location tracking precision.
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I. INTRODUCTION

Being regarded as one of the most promising technologies

of this century, Radio Frequency IDentification (RFID) has got

broad applications in everyday scenarios, i.e., warehouse in-

ventorying, baggage sortation in the airport, logistics tracking,

books ordering in the library and so on [1], [2]. A recent usage

of RFID technology is in the Electronic Article Surveillance

(EAS) system. According to an official statement last year, the

total loss of commodities in retail industry has reached up to

123.4 billion dollars all over the world, accounting for 1.23%
of the gross income, and unfortunately, 77% of the loss results

from pilferage. To prevent goods from being stolen, EAS,

which was initially designed to serve for the clothing industry,

has been applied to many department stores, supermarkets,

libraries, etc.

Compared to a conventional acoustomagnetic-based system,

the RF-based EAS adopting UHF RFID devices have been

well appreciated for its light volume, wireless communication,

automatic identification and low cost. However, limited by

its principle, existing RFID-based EAS systems are suffer-

ing from the drawback of false alarm, which degrades the

performance dramatically. Here, the false alarm is defined as

the false positive unintentionally reported by the system when

users are not actually leaving or entering the warning zone.
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Fig. 1: Illustration of TagVision

False alarm not only causes potential trouble for the adminis-

trative staff, but also generates conflict between consumers and

businesses. A similar problem also emerges in the warehouse

and logistics management domain. Although the RFID-based

technique wins in its quick identification speed, centralized

management, security, etc., when pitted against manual op-

eration, the misreading problem (misreading the goods when

they are close to the detection zone instead of passing through

it) that comes along can cause information errors, impact

management activity, and even result in unnecessary losses.

So to summarize, the false alarm (reading) is a common issue

in many RFID-based applications and how to reduce it is of

significant importance.

One typical approach to solve this is to design a specialized

antenna with the radiation lobe as narrow as possible, so that

the percentage of unwanted reads can be minimized, however

this can be relatively hard to implement. Alternatively, if we

can obtain the tag’s accurate location at every instant, it can

help to make better decisions. But, tag localization itself is a

challenging task especially in passive backscatter systems.

On the other hand, recent years have witnessed the Com-

puter Vision (CV) technology progress to a remarkable state

where reliable tracking of individual objects or people from

video segments can be achieved at low overhead. Besides,

the camera device is inexpensive and has wide deployment

in everyday life. We can acquire comprehensive monitoring

images from the region of interest with only one small pre-

deployed properly placed camera. However, there are also

practical problems bothering the CV system, e.g., an item
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is found stolen in the site but there may be multiple people

captured by the monitoring camera, making it hard to identify

the thief. If an RFID tag is pre-attached onto the item, we can

traceback the target by figuring out which trajectory is most

likely to be that of the tag’s.

Based on all the above, this work proposes TagVision,

a fine-grained identifying and tracking schema for tagged

objects, which fuses RFID and CV together using only one

Commercial Off-The-Shelf (COTS) camera and RFID antenna.

Fig. 1 illustrates a toy example of the scene. There exist

multiple moving objects (also referred to as motion blobs,

B1, B2, · · · ), among which one has the RFID tag attached

while the others do not. The basic idea of TagVision is

as follows. The reader continuously interrogates tags in the

surveillance region during which the camera keeps monitoring

moving objects in the scene. TagVision first schedules the

CV subsystem to give accurate trajectory tracking results of

all current motion blobs. Then for the detected RFID tag,

TagVision tries to match it to one of the motion blob that

is most likely to be the tag’s host1. For this task, a proposed

matching score will be calculated and assigned to each motion

blob integrating the target tag’s phase information reported by

the reader from the RFID subsystem. Finally, the tag will be

matched to the specific motion blob with the highest matching

score. Meanwhile, the accurate trajectory of the target tag can

be acquired as the corresponding tracking results from the CV

subsystem.

Contributions: In summary, this paper makes the following

contributions:

• First, TagVision makes an innovative combination of the

computer vision and RFID technologies to enable highly ac-

curate tracking of tagged objects, providing a new perspective

to deal with practical problems in the RFID domain.

• Second, a motion blob detection and tracking mechanism

is implemented, utilizing the dense optical flow method and

mean-shift algorithm.

• Third, a fusion algorithm is designed to seamlessly link

the location information output by the CV subsystem to the

phase data collected by the RFID subsystem, which success-

fully handles the negative impact from phase measurement

error (caused by environmental noise and tag diversity).

• Fourth, we implement the system purely with COTS

camera and RFID products and conduct comprehensive eval-

uations. It’s validated that TagVision can match the target tag

to its real host with as high as 98% precision on average and

track the tag at a very fine granularity.

The rest of the paper is organized as follows. The main

design of TagVision is overviewed in §II. We present the

technical details of TagVision in §III and §IV with regard to the

two subsystems respectively. The implementation of TagVision

is described in §V and evaluated in §VI. We review related

work in §VII and conclude this paper in §VIII.

II. OVERVIEW

TagVision is a fine-grained passive tracking system towards

1The host refers to the blob with the target tag attached.
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Fig. 3: Flow of motion blob detection and tracking

tagged mobile objects, which organically combines CV to

existing RFID systems. To this end, let’s first look at the pros

and cons of existing CV and RFID systems. CV performs

well at continuously providing accurate location estimates of

multiple targets while failing to differentiate them from each

other. An RFID reader can efficiently identify the tags within

the operating range while it is hard to estimate their accurate

locations. So we can regard the CV tool as a complement to

the RFID system, since it takes full advantage of both systems.

In this work, we focus on locating and tracking of tags that are

not moving at a high speed. The reason is that there may be

severe packet loss when the tag moves rapidly, even making

it unable to be read, which is beyond the scope of our paper.

In the scene, there are multiple motion blobs, with one

of them having an attached RFID tag. TagVision deploys a

monocular camera mounted on the ceiling to provide a bird’s-

eye view of the surveillance region and a reader antenna to

collect the phase information of the tag. Its infrastructure also

includes a central server which stores the camera parameters,

coordinates of the antenna and other system settings. Then,

TagVision goes through the following steps at a high level to

track the tagged objects:

• The camera records the image frames of the scene for

a while and the reader interrogates nearby tags in the

meantime. Afterwards, image data and signal snapshots

are sent to the server.

• TagVision acquires the instant real-world coordinates of

all the motion blobs at every frame from the image data,

using the mechanism in §III.
• TagVision obtains and calibrates the phase shifts from

the signal snapshots and utilizes the fusion algorithm to

match the tag to one specific motion blob (see §IV).

Fig. 2 illustrates the system architecture of TagVision. The

whole system is composed of two subsystems: the RFID

subsystem and the CV subsystem. We will elaborate on the

technical details of the above steps in the next few sections.

III. CV SUBSYSTEM

In this section, we describe how the CV subsystem works,

and how it assists the RFID subsystem for object tracking. We

start with the preliminary knowledge in the CV domain.

A. Detection and Tracking of Moving Objects

As an auxiliary component, the CV subsystem is designed

to detect and track the moving targets in our surveillance

region. After the camera captures the image frames, the blob
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Fig. 2: System architecture

detection and tracking module goes through the steps outlined

in the flowchart in Fig. 3. It relates two consecutive frames,

which first go to the optical flow computation block to find

the 2D-motion field. The optical flow is the apparent motion

of brightness patterns in the image and in mathematical terms,

if I(x, t) is the image intensity at a coordinate x at time t,
one wants, for each pixel x, find the displacement vector a
that fulfils

I(x, t) = I(x+ a, t+∆t)

We adopt the Lucas-Kanade optical flow method [3] to ac-

complish this. Then, the blob detection block is employed to

detect blob instances (marked as B = {B1, B2, · · · , BM})
and incorporates several constraints regarding blob size and

velocity. To track the individual blobs over consecutive frames,

a mean-shift tracking approach [4] is applied. After sampling

a certain number of frames, we can construct the trajectory

Li of every moving object Bi over time, which can be

represented as the two tuples of position and time, namely

Li = {(pi,1, t1), (pi,2, t2), · · · }. And pi,j indicates the location

of blob Bi in the image at time tj .

B. Coordinates Transformation

Up to now, the trajectories of moving objects that we get

are represented as pixel values in the camera image plane.

Ultimately, what we need is the trajectory in our physical

world coordinate system. So the corresponding transformation

between the two systems is wanted. For a better illustration,

let’s start with some notations in the camera model.

A 2D point in the camera image plane is denoted by p =
[u, v]T and a 3D point in space is denoted by P = [X,Y, Z]T.2

We use x̃ to indicate the augmented vector by adding 1 as the

last element: p̃ = [u, v, 1]T and P̃ = [X,Y, Z, 1]T. A camera

is modeled by the usual pinhole, then the relationship between

a 3D point P and its image projection p is given by

cp̃ = A1A2P̃ (1)

2
A

T denotes the transpose of matrix A.

where c is an arbitrary scale factor, A1 and A2 are called

the camera intrinsic matrix and extrinsic matrix respectively.

A2 =
[

R T
]

, represents the rotation (R) and translation

(T) which relate the world coordinate system to the camera

coordinate system. And A1 is given by

A1 =





α γ u0

0 β v0
0 0 1





with (u0, v0) the coordinates of the principal point, α and β
the scale factors in image u and v axes, and γ the parameter

describing the skewness of the two image axes.

In practice, desktop cameras usually use lens to capture

more light, thus exhibiting significant lens distortion, espe-

cially radial distortion. Let (x, y) be the ideal (non-observable

distortion-free) pixel image coordinates, and (x̆, y̆) the cor-

responding real (distorted) observed image coordinates. Then

we have [5]:

x̆ = x+ x
(

k1(x
2 + y2) + k2(x

2 + y2)2
)

y̆ = y + y
(

k1(x
2 + y2) + k2(x

2 + y2)2
)

where k1 and k2 are the coefficients of the radial distortion.

The center of the radial distortion is the same as the principal

point.

In order to get the real physical world coordinates of our

tracking objects, we need to calibrate the camera for all the

above mentioned parameters, namely intrinsic matrix A1,

extrinsic matrix A2 and distortion coefficients k1, k2. The

technique in [6] is adopted because of its simplicity and

robustness. It works by letting the camera observe a planar

pattern (which can be printed on a laser printer and attached

to a reasonable planar surface, e.g., a handbook cover) shown

at a few (at least two) different orientations. Either the camera

or the planar pattern can be moved by hand and the motion

need not be known. Fig. 4 shows our experimental setup for

camera calibration. The model plane is a 7×5 checker pattern,

with every square length of 41mm, and there are 24 corners.

The camera to be calibrated is a COTS AONI D881 HD720P
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Fig. 4: Camera calibration setup

camera. We implement our calibration program using OpenCV

and totally conduct 50 experiments with 24 images of the

plane under different orientations taken each. Table I lists

the computed results of the parameters’ values. The extrinsic

matrix indicating the rotation and translation of the camera can

be further computed using the solvePnP function in OpenCV,

with the intrinsic matrix and distortion coefficients as inputs.

After properly calibrating the camera, we can automatically

transform the targets’ location pi,j in the pixel image coordi-

nate system to the real world position Pi,j . The mean error of

our coordinates transformation is 1.56mm (see §VI-B), which

is sufficient for further use.

IV. RFID SUBSYSTEM

In this section, we elaborate into TagVision’s technical de-

tails in regard to the RFID subsystem. As previously described,

we have realized real-time tracking of the moving objects in

our surveillance region using a CV-based technique. So the

problem the RFID subsystem should tackle is how to match

the RFID tag to one of those trajectories.

A. Phase Model

The RF phase is a common parameter supported by com-

mercial RFID readers. We use a reader connected with one

antenna to get the tags’ phase values, as illustrated in Fig. 1.

Suppose d(t) is the distance between the antenna and the tag

at time t, the signal traverses a total distance of 2d(t) back and

forth in backscatter communication systems. The total phase

rotation output by the reader can be expressed as [7]:

θ(t) =

(

2π

λ
× 2d(t) + θdiv

)

mod 2π (2)

where λ is the wavelength. The variable θdiv refers to diversity

term, which is related to device hardware characteristics. The

Intrinsic matrix A1

Distortion coefficients
(k1, k2)





1457.2068 0 319.5
0 1457.2068 239.5
0 0 1



 (0.0562, 2.0569)

TABLE I: Calibration result

phase is a periodic function with period 2π radians which re-

peats every λ/2 in the distance of backscatter communication.

As the phase is directly related to the distance, to make

better use of it, we should determine the geometric relation-

ship between the reader and tag. But before more in-depth

discussion, there is some preprocessing work that should be

completed.

B. Preprocessing

1) Clock Synchronization: Considering the CV subsystem,

we get the complete trajectory of each object at total of K
different time slots {tc1, tc2, · · · , tcK}. Considering the RFID

subsystem, we have the phase sequence reported by the

reader at total L different time slots {tr1, tr2, · · · , trL}.3 Careful

reader may remark the inconsistency of the time clocks of

the two subsystems, which hinders us from processing the

data accurately. So the first problem we need to tackle is

time synchronization between the two subsystems, i.e., the

computer and the RFID reader. We choose the Network Time

Protocol (NTP) on the Internet as solution. The NTP can

usually provide better than one milliseconds accuracy in local

area networks. Our idea is to make both the computer and

reader connect to the same NTP server “asia.pool.ntp.org”. To

achieve sufficient synchronization precision, we should config

the reader online for an adequate amount of time so that it

can communicate with the NTP sever adequately.

2) Timestamp Warping: Although the time is synchronized,

there are gaps between the interrogation rate of the reader

(∼ 60 samples per second) and the frame rate of the camera

(16fps we adopt). Consequently timestamp sampling in the

two subsystems may not align with each other. To overcome

this, we refer the CV subsystem (with lower sample rate) as the

benchmark, and for an arbitrary time tck, we find the timestamp

trl which is closest to tck as the corresponding timestamp in

the RFID subsystem. trl is formulized as below:

trl = argmin |tri − tck|
tr
i
∈{tr

1
,tr

2
,··· ,tr

L
}

(3)

In consideration of the computation and time costs, it is

not necessary to deal with every collected sample, therefore

assume N random snapshots of the raw data are taken.

With both the clock synchronization and timestamp warping

problems solved, for every moving object Bi (i = 1, · · · ,M ),

at each time snapshot tj (i = 1, · · · , N ), we can get its

location Pi,j and the corresponding phase value θj of the tag.

Here note that we use the same time symbol tj in the two

subsystems for convenience.

C. Fusion Algorithm

As we mentioned earlier, the key to the RFID subsystem lies

in the geometric relationship between the reader and target

tag, which in turn can be inferred from the tracking results

output by the CV subsystem. The fusion algorithm is designed

3
t
c and t

r represent the time clocks in the CV and RFID subsystems
respectively.
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Fig. 5: Misalignment of phase measurements

to tactfully associate the two types of data from the two

subsystems.

The antenna is denoted as A with coordinates of

(xA, yA, zA). Let ϑi,j be the theoretical phase value of the

ith object at time tj . Ignoring the diversity term, ϑi,j can be

calculated as follows:

ϑi,j =
4π

λ
|Pi,jA| mod 2π (4)

where | · | measures the Euclidean distance between position

P and A. And

|Pi,jA| =
√

(xi,j − xA)2 + (yi,j − yA)2 + (zi,j − zA)2 (5)

where (xi,j , yi,j , zi,j) denotes the space coordinates of Pi,j .

As we know, tag’s phase rotation output by the reader

is associated with the diversity factor θdiv. So there exists

misalignment between the measured phase and theoretical

one. An empirical study is conducted to get a better un-

derstanding. We attach a tag onto a toy train and make it

move with a uniform speed of 7cm/s along a linear track

x = 10cm (−70cm ≤ y ≤ 70cm) while the reader locates

at (120cm, 0). Fig. 5(a) shows the collected phase shifts and

ground truth. The ground truth is calculated using Eqn. 4.

Through comparison, we find that there is about 3.2 radians

misalignment between them, resulting from θdiv. Since the

misalignment remains relatively unchanged under the same

macro environment (e.g., same temperature, humidity, etc.), it

is reasonable to assume θdiv is a constant term in the obtained

phase sequence. Then we can use the first phase value as a

reference to eliminate the misalignment’s influence as

θ(ti)− θ(t1) = (ϑ(ti) + θdiv)− (ϑ(t1) + θdiv) = ϑ(ti)−ϑ(t1)
(6)

where the symbol ϑ denotes the corresponding theoretical

phase value. The term θdiv is removed by doing so. Fig. 5(b)

shows the results after calibrating for the device diversity. Both

of the sequences synchronize well with each other.

We propose the fusion algorithm which works by matching

the obtained phase sequence to each of the motion blobs

(referred as blob matching) through assigning a matching score

to each trajectory. The whole procedure is summarized in

Algorithm 1. The matching score represents the possibility

that the corresponding object may be the tag’s host, and a

Algorithm 1 Fusion algorithm

Input:

Trajectories of all M motion blobs: {L1,L2, · · · ,LM};
Tag’s phase sequence: θ(t); Number of sampling points:

N ; Number of iterations: I;

Output:

The tag’s host Bm;

1: Randomly sample N time snapshots t1, t2, · · · , tN ;;

2: for each i ∈ [1,M ] do

3: Get corresponding N locations Pi,1, Pi,2, · · · , Pi,N

from Li;

4: Get N sampled phase {θ1, θ2, · · · , θN} from θ(t);
5: Calculate the matching score si of blob Bi;

6: end for

7: Repeat step 1-6 for I times and average for every si;
8: m← argmax si, i ∈ {1, 2, · · · ,M};
9: return Bm;

higher matching score indicates the tag is more likely to

be on that track. Then the problem is how to define the

matching score. It’s known that tag’s phase measurement

results contain random errors, which follow a typical Gaussian

distribution with a standard deviation of 0.1 radians, i.e.,

θ−ϑ ∼ N (0, 0.1) [1]. Thus we should consider the measured

phase as a Gaussian random variable instead of a constant

value. Based on this, a probabilistic model is employed to

define the matching score si of the ith motion blob which is

given by:

si =

∣

∣

∣

∣

∣

∣

N
∑

j=1

wi,je
Jθref

∣

∣

∣

∣

∣

∣

(7)

where














wi,j = f(θref; 0, 0.1×
√
2)

θref = (θj − θ1)− (ϑi,j − ϑi,1)

f(x;µ, σ) =
1

σ
√
2π

exp
(

− (x−µ)2

2σ2

)

f(x;µ, σ) is the Probability Density Function (PDF) of Gaus-

sian distribution N (µ, σ) and ϑi,j can be calculated with Eqn.

4 and Eqn. 5.

The term J denotes the imaginary unit and we use the

complex number eJθ to express the wireless signal with unit

amplitude. Notice that θref = (θj − θ1) − (ϑi,j − ϑi,1) =
(θj − ϑi,j)− (θ1− ϑi,1). Suppose the tag is on the ith motion

blob, then (θj−ϑi,j) ∼ N (0, 0.1) and (θ1−ϑi,1) ∼ N (0, 0.1),
so θref ∼ N (0, 0.1×

√
2). The assigned weight wi,j represents

the probability that the measured phase is emitted from A
and backscattered at the ith blob at the time tj . By doing

so, the matching score is enhanced for objects with a higher

possibility to be the ground truth and weakened for others.

If the tag is factually on blob Bi, then the theoretical phase

should equal the measured one. The vector of eJθref will get

close to the real axis and wi,j will reach its maximum value

because θref approaches 0. All observations from different
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signal snapshots add up for each other. Otherwise, if Bi is

not the ground truth, there will be deviation between the

theoretical and measured phase. Then wi,j will get a smaller

value and different signal observations cancel each other out,

leading the final superimposition of all snapshots to a much

lower level.

For every moving object Bi detected in the CV subsys-

tem, we can calculate a corresponding matching score si
using the aforementioned fusion algorithm. Further, to avoid

contingency and enhance the robustness of our method, we

run the fusion algorithm repeatedly for several iterations with

data sampled randomly each time and average the results.

Eventually, the tag can be matched to one specific moving

object with the highest matching score:

m = argmax si
i∈{1,2,··· ,M}

(8)

Bm is then output as the target. The trajectory Lm of the

tag is also retrieved simultaneously from the CV subsystem.

That is the completed workflow of our method. In more

complex scenario, multiple objects may be stolen at the same

time. Intuitively, we can repeat the above matching procedure

for each identified tag and use more antennas to reduce the

influence of multi-path, which forms a part of our future work.

D. Simulation Results

To demonstrate the feasibility of our approach, a typical

indoor scenario is simulated as depicted in Fig. 6: total 101
linear tracks are generated along the x-axis at an interval of

6mm, namely X1 = −300, X2 = −294, · · · , X101 = 300.

The ground truth is X51 = 0 marked with red and the reader

locates at (1018mm, 0). Here for the sake of expression,

we consider the trajectories on 2D plane. For each iteration,

we randomly select 30 sampling points within the y-axis

range of [−300, 300] on every trajectory and calculate the

corresponding matching score using our fusion algorithm. The

phase value adopted in our simulation is generated by adding

White Gaussian Noise to the theoretical value. Fig. 6(b) and

Fig. 6(c) are the averaged results of one iteration and 100
iterations respectively. The matching score is normalized using

the maximum value as reference. We can clearly see that in

either of the situations, the ground truth has an overwhelm-

ingly higher value when compared to other tracks. Besides,

the result in Fig. 6(c) is more uniform than that in Fig. 6(b).

This is because one-time sampling may introduce uncertainty

to the result, but through a heavy amount of sampling and

taking the average, some biased values can be reduced down,

making the result more convincing. As can be seen, while the

real trajectory of the tag has a maximum matching score of 1,

the amplitudes of other tracks are far smaller, almost all below

0.075. This validates the effectiveness of our approach.

V. IMPLEMENTATION

We build a prototype of TagVision using a COTS camera

and UHF RFID devices.

Hardware: In the CV subsystem, we use an AONI D881

HD720P camera [8] which can support up to 60fps frame rate.

Fig. 7: Experiment setup

The camera is cheap and only costs about 100 CNY. In the

RFID subsystem, we adopt an ImpinJ Speedway Revolution

R420 reader [9] which is compatible with EPC Gen2 standard

and operates during the frequency band of 920.5 ∼ 924.5
MHz by default. We only employ one antenna with circular

polarization manufactured by Yeon technology [10], whose

size is 225mm×225mm×40mm. The reader is connected to

our host end through wireless network. Two types of tags from

Alien Corp [11], modeled “2× 2” with size of 44× 46mm2

and “Squig” with size of 44.5×10.4mm2 are employed. Both

of them are low-cost (only about 5 cents per tag on average).

Software: We implement our algorithm including cam-

era calibration and object tracking in CV subsystem using

OpenCV computer vision library with C/C++ language. For

the RFID subsystem, we adopt LLRP (Low Level Reader

Protocol) [7] to communicate with the reader. ImpinJ reader

extends this protocol for supporting the phase report. We adjust

the configuration of reader to immediately report its readings

whenever tag is detected. The client code is implemented using

Java language. We have also noticed and solved the time

synchronization problem between the two subsystems’ time

clocks as mentioned before in §IV-B. We use a Dell PC to

run our all our program, as well as connecting to the reader

under LLRP. The machine equips Intel Core i5-4440 CPU at

3.1GHz and 8GB memory.

VI. EVALUATION

In this section, we conduct performance evaluation of

TagVision in our lab environment as shown in Fig. 7.

A. Evaluation Methodology

Three groups of experiments are designed and performed

in an office room whose size is 400 × 800cm2. We emulate

a mobile object via a toy train on which a tag is attached

if needed, moving on tracks of different shapes (linear or

arc-shaped). The location of the antenna is measured by a

laser rangefinder with an error of ±0.1mm under the support

of a laser level. We adopt the error distance, defined as the

Euclidean distance between the result and ground truth, as our

basis metric.
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Fig. 6: Simulation results of the fusion algorithm. (a) The 101 generated tracks. (b) The calculated matching score with

one iteration. (c) The calculated matching score with 100 iterations.
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tion
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B. Accuracy of Coordinate Transformation

As a core model of the CV subsystem, the accuracy of

coordinate transformation between the camera image plane

and the physical world has a direct influence on the final results

of our method. After calibrating the camera for necessary

parameters as we mention in §III-B, we carry on experiments

on a table top to inspect the accuracy. We establish the

Cartesian coordinate system with regard to the desktop, then

select and mark 41 different points uniformly scattering among

the desktop plane as the ground truth, whose locations have

been measured in advance. Fig. 8 shows the CDF of coordinate

transformation error. The mean error distance is 0.96mm in x-

axis, 1.05mm in y-axis and 1.56mm in combined dimension

with standard deviation of 1.57mm. Besides, 90% of the errors

are less than 2.74mm with minimal error of 0.14mm and

maximal error of 7.61mm. Overall, the accuracy of coordinate

transformation is very high and lays the foundation for our

latter work.

C. Accuracy of Object Tracking

In order to achieve better result for tracking, TagVision

adopt the dense optical flow method to detect the moving blob

and combine the mean-shift tracking algorithm. To assess the

performance, we lower the frame rate of the video and get the

ground truth by manually marking the center location of the

toy train at every frame. As illustrated in Fig. 9, the ground

truth is marked as ‘+’ with blue and the tracking result output

by our CV subsystem is noted as ‘◦’ with red. On the basis

of 20 repeated experiments, the mean error distance of our

tracking method is 3.94mm in x-axis, 3.25mm in y-axis and

5.68mm in combined dimension with standard deviation of

4.79mm, which is small enough compared to the size of the

toy train, about 21× 182mm2.

D. Performance of Trajectory Matching

1) Matching Accuracy: Playing the role of being a bridge

between the CV subsystem and RFID subsystem, the blob

matching module’s performance is of significant importance

to TagVision. To evaluate it, we conduct the following ex-

periment. We deploy four tracks with each about 20cm apart

from another, as depicted in Fig. 11. The RFID tag is placed

on the blob at Track 4. We run our algorithm to calculate the

matching score of each track. Fig. 12 reveals the normalized

results of iterating for 1 and 20 times respectively. The ground

truth is calculated by manually marking the moving blob with

the RFID tag attached as mentioned earlier. And we randomly

sample 30 positions from the track at each time of iteration. It

can be clearly seen from the figure that in both of the cases, the

Track 4 gains the highest matching score, which is consistent

with the ground truth because the RFID tag is indeed on the

forth blob. But, with only 1 iteration, the matching score of

Track 4 is very close to that of Track 3 and not distinguishable

enough compared to other tracks, while the matching scores

become more stable and easy to tell when we increase the

iteration time to 20, or even more. Our experimentation shows
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Fig. 12: Comparison of different tracks’ matching scores under different

iteration times. (a) Iterating once. (b) Iterating for 20 times.
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Fig. 13: Overall tracking error

that 20 iterations are sufficient to make the result robust and

discriminative and it only takes 0.028s to finish, so we set

the default number of iterations to 20. Besides, since our

CV subsystem has relatively high precision, the calculated

matching score of Track 4 approximates the ground truth very

much.

Furthermore, we vary the number of tracks from 2 to 4 with

different shapes (linear and non-linear) to make a comparison

study. We define the matching accuracy ratio R as below

R =
# of successful matches

# of experiments in total
× 100% (9)

Table II depicts the obtained accuracy ratio along with number

of tracks. It’s obvious that all of the cases get very high

accuracy ratio (98% on average) and there isn’t much dif-

ference among them (less than 1% gap). This demonstrates

the effectiveness of our fusion algorithm. Besides, with the

number of tracks increasing, the accuracy ratio also rises a

little. This is reasonable because the fewer tracks, the less

error will be accumulated.

2) Impact of Sampling Number: The output trajectory from

the CV subsystem usually contains more than 100 positions

each and we randomly sample 30 by default. So we wonder

whether the number of sampling points will have an impact

on the final blob matching accuracy. To study this, we range

the sampling number from 5 to 40 at an interval of 5, and

for each case, we test on 2, 3 and 4 tracks respectively. Note

Track No. 1 Track No. 2 Track No. 3 Track No. 4

RFID tag

Fig. 11: Four tracks scene

that we adopt the default number of iterations 20. Fig. 10

describes how the matching accuracy ratio changes along with

the sampling number. We have the following observations.

• With the number of sampling points increases, the ac-

curacy ratio also exhibits an apparently rising pattern,

from 59% when sampling number is 5 to 98% when

sampling number reaches 40. The reason why the accu-

racy becomes relatively low when the sampling number

is less than 15 is that the accumulated points are too

limited in the fusion algorithm, thus the error incurred

by environmental noise will cause greater influence on

the final result, making the target track more difficult to

be differentiated.

• The matching accuracy remains stable at 98% when

sampling number arrives at a certain level (≥ 30). This is

because the algorithm itself becomes the bottleneck when

we sample adequately. The accuracy already reaches up

to 94% when sampling 20 points. To gain a tradeoff

between computation cost and precision, we choose 30
as the default sampling number.

• Under the same sampling number, the fewer tracks there

are, the higher precision can be achieved, which is

consistent with our conclusion in the previous subsection.

E. Overall Accuracy of Tag Tracking

As TagVision aims at tracking tagged object, the final

tracking accuracy of the target tag is the most crucial metric.

Fig. 13 plots the CDF of tracking error. We observe that most

of the errors are within 10mm as the tag is correctly matched

to its host except very few outliers beyond 100mm, which are

caused by the blob matching fault. The mean error distance

is 7.55mm in x-axis, 5.91mm in y-axis, and 10.33mm in

combined dimension with standard deviation of 21.23mm,

and 90% of the errors are less than 12.13mm, which is good

enough for many applications. It is the excellent performance

# of tracks 2 3 4

Accuracy ratio R 98% 98% 97%

TABLE II: Matching accuracy
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of the fusion algorithm that guarantees the overall tracking

accuracy of tagged object.

VII. RELATED WORK

Fine-grained localization and object tracking have been well

studied in both CV and RFID field.

CV-based techniques: Recent years have witnessed the

rapid advance of computer vision, [6], [12], making it possible

for reliable tracking of individual objects or people [13].

Common visual features for tracking include color, edges,

optical flow, texture, etc., or a combination of these for better

performance. Comaniciu et al. [4] design a method for real-

time tracking of non-rigid objects based on the mean-shift

iterations. The authors in [14] propose a robust object tracking

algorithm using a collaborative model. Zhang et al. [15]

presents a new multi-object model-free tracker that can revolve

the problem of similar appearance. It is the maturity of CV

technology that motivates us and establishes the basis of our

method.

RFID-based techniques: Localization utilizing RF signal

has drawn the attention of many researchers. Early works rely

on RSSI information as the fingerprint or distance ranging

metric to acquire location information [16], [17]. There is also

growing interest in utilizing phase information to locate tags.

Angle of Arrival (AoA) is a typical solution, which works by

measuring the phase difference between the received signals

at different antennas [18], [19]. BackPos [20] proposes the

hyperbolic positioning using the phases detected by antennas

under triangle constraint. Tagspin [21] makes an innovative im-

provement to the traditional AoA approach and first quantifies

the tag orientation’s impact. Synthetic Aperture Radar (SAR)

is another technique taking advantage of moving antenna or tag

to simulate antenna array for hardware cost consideration [22],

[23]. PinIt [24] captures and extracts multi-path profiles via

SAR to locate RFIDs. Tagoram [1] realizes real-time tracking

of mobile tag to a very high precision.

There is also some literature following on the combination

of CV and RFID systems for localization and tracking. Goller

et al. [25] integrate the information from the two sensor

modalities in a probabilistic manner, providing robustness to

false positive observations. The authors in [26] have investi-

gated on a camera-assisted RFID localization technique for

passive UHF label, leading to substantial improvement on

accuracy. However, both of the works utilize the RSSI for

model construction, which is proven to be unreliable because

of its high sensitivity to multi-path propagation and antenna

gain, thus difficult to achieve high precision.

VIII. CONCLUSION

In this work we present a tagged object identifying and

tracking system based on the fusion of RFID’s strengths and

CV’s localization capability. We implement a prototype of

TagVision with COTS devices and conduct extensive eval-

uations. The results show that TagVision can achieve fairly

good accuracy with strong robustness. We believe with the

tag being tracked at a fine granularity, our system will open

up new opportunities in practical deployments.
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