Enabling RFID-Based Tracking for Multi-Objects with Visual Aids: A Calibration-Free Solution

Chunhui Duan, Wenlei Shi, Fan Dang and Xuan Ding

July 8, 2020

Object Identification and Tracking

Background

Checkout-free shopping Electronic article surveillance

The ability to detect, track and identify multiple objects is crucial in many applications.

Object Identification and Tracking Existing Technologies

RFID-based localization

- Pros: battery-free, non-lineof-sight communication, etc
- Cons: dedicated devices or massive deployment costs

CV-based tracking

- ✓ Pros: high accuracy, low overhead, etc
- Cons: unable to identify or distinguish specific targets

Object Identification and Tracking State-of-the-art work

TagVision^[1]

✓ A hybrid RFID and CV system for accurate tracking of tagged object

- Pros: high tracking accuracy
- Limitations:
- a) only focuses on the identifying and tracking of a single target
- b) requires to calibrate the camera in advance
- c) the calibration effort is not onetime-only

[1] C. Duan, X. Rao, L. Yang and Y. Liu, "Fusing RFID and computer vision for fine-grained object trackin g," in Proceedings of IEEE INFOCOM, Atlanta, GA, 2017, pp. 1-9.

Overview of Our System

Tagview

A calibration-free, lightweight, and fine-grained identifying and tracking system for multiple objects. No repetitive camera calibration efforts are needed.

Overview of Our System

Tagview

Steps:

- ✓ Image-level object tracking: we detect and track moving objects in image-level using state-of-the-art deep learning-based algorithms.
- Analyzing tag-object relationship: we come up with a linear model to measure the consistency between a given pair of tag and object.
- Real-world target identification: we realize identification of targets by figuring out an optimal mapping between objects and tags.

Technical details

Image-Level Object Tracking

[1] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, "SSD: Single shot multibox detector," in Proceedings of ECCV, 2016, pp. 21–37.

[2] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, "Simple online and realtime tracking," in Proceedings of ICIP, 2016, pp. 3464–3468.

Analyzing Tag-Object Relationship

Modeling backscatter signal

Real-World Target Identification Matching in bipartite graph

Moving objects RFID tags (image traces) (phase sequences)

✓ The weight w(u, v) denotes the fitness of a pair of object and tag.

 $\theta(t) = a \times \gamma(t) + b$

- ✓ Given θ and γ , we utilize linear regression to estimate the coefficients *a* and *b*.
- ✓ w is defined as the R-squared of the linear regression.

$$R^{2} = 1 - \frac{\sum_{i} (\theta[t_{i}] - (a\gamma_{i} + b))^{2}}{\sum_{i} (\theta[t_{i}] - \bar{\theta})^{2}}$$

Practical Challenges

OQ OQ Inevitable ambiguity in tags' phase

Directly utilizing the maximum matching may not conform to the ground truth.

Real-World Target Identification

Pruning invalid edges in the graph

• All correctly matched pairs of objects and tags should maintain the same coefficient $a = \frac{4\pi h}{\lambda}$ in the linear model.

Real-World Target Identification

Incorporating tag's RSSI

- ✓ Compute an *agreement* value for any two edges (objecttag pairs) in the graph
- \checkmark An agreement matrix Q can be established

Q $\begin{bmatrix} 1 & 0.4 & \cdots & 0.8 \\ 0.6 & 1 & \cdots & 0.5 \\ \vdots & \vdots & \ddots & \vdots \\ 0.3 & 0.1 & \cdots & 1 \end{bmatrix}$

Real-World Target Identification

Selecting edges (object-tag pairs)

- $\checkmark X$ denotes the selection result
- ✓ Formalized as the optimization problem:

Implementation & Evaluation

Experimental Setup

Accuracy of Multi-Object Tracking

The mean error distance is 4.82 pixels (corresponding to a 5.36mm physical distance).

Accuracy of Target Identification

Tagview achieves 0.98 identification accuracy on average without camera calibration.

Robustness in Various Settings

Generally speaking, our method works well with multiple objects and different models of tags.

Conclusion

- ✓ We present a pervasive identification and tracking approach for multiple objects with the fusion of RFID and CV techniques.
- ✓ We design a novel identification schema that works with only image-level trajectory information.
- ✓ Tagview can achieve high target recognition and tracking accuracy.

Thanks

Q&A