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Abstract—Identification and tracking of multiple objects are
essential in many applications. As a key enabler of automatic ID
technology, RFID has got widespread adoption with item-level
tagging in everyday life. However, restricted to the computation
capability of passive RFID systems, locating or tracking tags has
always been a challenging task. Meanwhile, as a fundamental
problem in the field of computer vision, object tracking in
images has progressed to a remarkable state especially with the
rapid development of deep learning in the past few years. To
enable lightweight tracking of a specific target, researchers try
to complement computer vision to existing RFID architecture
and achieves fine granularity. However, such solution requires
calibration of the cameras extrinsic parameters at each new
setup, which is not convenient for usage. In this work, we
propose Tagview, a pervasive identifying and tracking system
that can work in various settings without repetitive calibration
efforts. It addresses the challenge by skillfully deploying the
RFID antenna and video camera at the identical position and
devising a multi-target recognition schema with only the image-
level trajectory information. We have implemented Tagview
with commercial RFID and camera devices and evaluated it
extensively. Experimental results show that our method can
archive high accuracy and robustness.

Index Terms—Identification, tracking, RFID, computer vision

I. INTRODUCTION

The ability to detect, track and identify multiple objects

is crucial in many domains such as automated surveillance,

goods monitoring, human-robot interaction, etc. A typical ap-

plication lies in today’s retail stores. The concept of checkout-

free shopping has swept the retail market in the past few

years, attracting both businesses and consumers with the

frictionless shopping experience provided. To enable such

intelligent service, one important technology is to identify and

keep track of the goods concerned with high accuracy. Another

potential usage is automated surveillance for security purpose.

In the management of many warehouses and buildings, admin-

istrators want to know and monitor the movement of specific

commodities or individuals. In all the above-mentioned tasks,

both the ID and trajectory information of targets are valuable,

which should be accurately acquired at the same time.

To realize identification and tracking for multiple objects,

one possible solution is to utilize radio frequency identification

(RFID) technology. As a key enabler of automatic ID tech-

nology, RFID offers an appealing alternative when compared

against traditional barcodes, given the nature of non-line-of-

sight (NLOS) communication and high reading rate of even

multiple objects simultaneously. Many manufacturers today
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Fig. 1: Scene of Tagview. There are multiple moving objects

carrying RFID tags. The video camera and RFID antenna are

deployed in the same position.

have already attached RFID tags to their products. But due

to the limitation of passive tag’s computation capability, it

has always been a challenging task to localize or track tags,

especially moving ones. State-of-the-art methods [1], [2] either

require dedicated device (like USRP) or massive deployment

costs (reference tags or antennas) to achieve high precision.

As a fundamental problem within the field of computer vi-

sion (CV), remarkable breakthroughs have been made in object

detection and tracking recently. Thanks to the proliferation of

high-performance computers, the availability of high quality

and inexpensive video cameras and the significant evolution

of deep neural networks, it becomes feasible and affordable to

keep track of even multiple moving objects in the image with

high accuracy and low overhead. However, the most essential

drawback of CV is that it can hardly identify specific targets

among a set of moving objects, or in other words, it fails to

distinguish one object from another.

To address the above issues, prior work [3] proposes a novel

approach named TagVision, which supplements the RFID

identification functionality with fine-grained tracking ability

by combining computer vision technology. To be exact, one

video camera and RFID antenna are deployed to obtain the

trajectories of moving objects and phase sequence of the target

tag. To reveal the location of the tag, TagVision tries to match

it to one motion blob that is most likely to carry it. The ratio-

nale is that the measured phase of the tag should be consistent

with the theoretical value computed with the true object’s real-

world trace information. Although TagVision offers a mean-
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ingful technique for object identification and tracking task,

the following two limitations remain to be overcome. First,

TagVision mainly focuses on the identification and tracking of

a single target, while a more complicated multi-object solution

is actually desired in practical scenarios. Second, for tracking

purpose, TagVision requires to calibrate the camera for its

parameters (especially extrinsic parameters) in advance, so as

to establish a complete transformation between the physical

world coordinates and image pixels. Moreover, the calibration

effort is not one-time-only, and need to be done at every new

setup when the camera’s posture changes or the world frame

alters, which makes the system inflexible and inconvenient to

use in practice.

Motivated by the above limitations, we propose Tagview, a

calibration-free, lightweight, and fine-grained identifying and

tracking system for multiple objects, which can work without

troublesome camera calibration efforts. To achieve this, a video

camera is deployed together with an RFID antenna, located at

an identical position directly above the surveillance region, as

shown in Fig. 1. The basic idea of Tagview is described as

below. We first detect and track the moving objects in image-

level utilizing state-of-the-art deep learning-based algorithms.

Then by analyzing the geometric relationship of moving

objects’ image trajectories and RFID tags’ phase sequences,

we come up with a linear model to measure the consistency

between a given pair of tag and object. After that, we design

an innovative target recognition schema, where we formalize

a weighted bipartite graph with the two sides representing

the moving objects and tags respectively, and try to figure

out a set of edges (i.e., tag-object pairs) that maximize the

sum of weights without violating certain constraints (more

details will be given in Section V). Finally, by combining

the identification and tracking results, we acquire the accurate

identity and trajectory of each target.

Compared against previous work [3], Tagview has the fol-

lowing key advantages. First, Tagview is capable of identifying

and tracking multiple moving objects without introducing

extra hardware. Even in some exceptional circumstances, for

example, objects move out of the surveillance region and

later come back, we are still able to correctly recognize their

identities. We believe such a feature would be useful in many

scenarios. Second, our system offers a one-fit-all solution for

object identification and tracking. By placing the camera and

antenna in the same location and further devising a series of

tricky algorithms, we free users from the troublesome camera

calibration procedure, which is mandatory in TagVision. As

we have no prior knowledge required on the relative position

of the camera, Tagview can still work when the device moves

or world system alters.

Contributions. In summary, this paper makes the following

contributions:

• We propose a multi-object identification and tracking ap-

proach, which successfully combines the computer vision

and RFID technologies with only a pair of the properly

deployed RFID antenna and video camera. As a user-

friendly system, Tagview need not require users to conduct

camera calibration each time the setup changes.

• We present a novel identification schema that can operate

with image-level trajectory information. A series of tricky

algorithms are designed to overcome the negative impacts

of imperfect measurements and other abnormal situations.

• We have implemented a prototype system for Tagview with

commercial off-the-shelf (COTS) RFID and camera equip-

ment, and evaluated it with extensive experiments. The final

identification accuracy can reach as high as 0.98 on average,

which demonstrates the practicality and effectiveness of our

design.

Roadmap. The remainder of the paper is organized as

follows. The main design of Tagview is overviewed in Sec-

tion II. We introduce the object tracking mechanism in Sec-

tion III. The technical details of our identification schema

are elaborated in Section IV and Section V. We present the

implementation and evaluation of our system in Section VI.

We review related work in Section VII, and finally conclude

this paper in Section VIII.

II. OVERVIEW

Tagview is an identification and tracking solution for mul-

tiple objects based on the combination of RFID and computer

vision technologies. Fig. 1 gives an illustrative example of our

system. In the scene, there are multiple moving objects (also

referred to motion blobs), carrying RFID tags with various

IDs. To relieve the camera calibration effort, we tactfully

deploy an RFID antenna together with a video camera. The

camera is mounted at the same location of the antenna on the

ceiling, providing a bird’s-eye view of the whole surveillance

region. Specifically, Tagview decomposes the object recogni-

tion and tracking task into the following steps:

• With the image frames captured by the camera as input,

Tagview goes through a multi-object detecting and tracking

framework with the mechanism in Section III.

• Tagview analyzes the mathematical relationship between

tags’ phase measurements collected by an RFID reader, and

image traces of moving objects acquired from the previous

step. A linear relation is modeled to measure the consistency

between these two modalities of data (see Section IV).

• Tagview realizes identification of targets by figuring out

mapping between objects and tags utilizing the proposed

algorithms in Section V.

The next few sections will elaborate on the above steps,

providing the technical details.

III. IMAGE-LEVEL OBJECT TRACKING

Studies in object detection and tracking has flourished in

recent years, and state-of-the-art trackers can achieve multi-

object tracking with high accuracy and robustness. In con-

sider of computation overhead and effectiveness, we choose

a tracking-by-detection framework. More details will be pre-

sented in this section.
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A. Multiple Object Detector

Given the image frame as input, the goal of object detec-

tion is to recognize instances of a predefined set of object

classes (e.g., humans, cars) and describe the locations of each

detected object using a bounding box. Recently, deep learning

techniques (typically based on convolutional neural network

or CNN) have emerged with striking success in computer

vision domain, serving as powerful means for learning feature

representations automatically and directly from image data.

In this work, we adopt the single shot detector (SSD) [4]

for object detection, which is a significant one-step framework

based on global regression/classification, mapping straightly

from image pixels to bounding box coordinates and class

probabilities. The core idea of SSD is to discretize the output

space of bounding boxes into a fixed set of default boxes over

different aspect ratios and scales per feature map location. The

network has multiple feature layers, with each produces a fixed

set of detection predictions using a set of convolutional filters.

For a feature layer of size m × n with p channels, the basic

element for predicting parameters of a potential detection is a

3×3×p small kernel that produces either a score for a category

or a shape offset relative to the default box coordinates. At

each of the m × n locations where the kernel is applied,

it produces an output value. The network is trained with a

weighted sum of localization loss (e.g., Smooth L1 [5]) and

confidence loss (e.g., Softmax).

B. Continuous Frame Tracker

In the tracking-by-detection strategy, a major task of multi-

object tracking (MOT) is to associate object detections on

a new video frame with previous ones to form trajectories

of the targets. We leverage the simple online and realtime

tracker (SORT) [6], which is an efficient and pragmatic online

tracking approach. It approximates inter-frame displacements

of each object with a linear constant velocity model which is

independent of other objects and camera motion. The state of

each target is modeled as:

[xI , yI , α, β, ẋI , ẏI , α̇]
T, (1)

where xI and yI represent the horizontal and vertical pixel

location of the target’s center, while α and β represent the

scale (area) and the aspect ratio of the targets bounding box.

To assign new detections to existing targets, the algorithm

computes a cost matrix as the intersection-over-union (IOU)

distance between each detection and all predicted bounding

boxes from the existing targets. When detection is associated

with a target, the detected bounding box is used to update

the target state where the velocity components are solved

optimally via a Kalman filter framework [7].

C. Principle of Camera Imaging

The aforementioned tracking of objects is done in image-

level. A 2D point in an image frame is a projection of a 3D

point in the physical world, and their mathematical relationship

is modeled by the camera parameters. Fig. 2 illustrates a
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Fig. 2: Camera model. A 3D point is related to its 2D

projection in the image frame through the camera’s intrinsic

and extrinsic parameters.

simple pinhole camera model. The extrinsic parameters define

the location and orientation of the camera with respect to the

world coordinate system (XW , YW , ZW ), so would change if

the camera moves or the world frame alters. The intrinsic

parameters (such as focal length, image center, and distortion)

allow a mapping between camera coordinates and pixel coor-

dinates (xI , yI ) in the image frame, and they are internal and

fixed to a particular camera/digitization setup. Many of today’s

commercial cameras can provide information on their intrinsic

parameters. Even if not, a one-time calibration procedure with

the technique in [8] would suit all devices of the same model.

In this work, we presume that the camera intrinsic parame-

ters are known in advance, which is not a harsh assumption and

can be easily met in practice. Then given an original image,

we first preprocess it by eliminating distortion and unifying

aspect ratio to make the picture and real scene maintain a

constant scaling factor. Different from prior work [3] which

requires both the knowledge of camera’s intrinsic and extrinsic

parameters so as to establish a complete transformation from

the real-world coordinates to image pixels, here Tagview only

operates on the image-level and can still work when the

camera position or world coordinates change. In many actual

applications, what people really concern is not the absolute

location or trace of an object, but the relative position of that

object with regard to other ones. So it is reasonable that we

focus on the image-level information of objects.

IV. ANALYZING TAG-OBJECT RELATIONSHIP

In this section, Tagview tries to figure out the relationship

between RFID tags’ backscatter signals and the acquired

image-level trajectories of moving objects.

A. Modeling Backscatter Signal

As Fig. 3 illustrates, the camera and RFID antenna are

deployed in the same position A facing the surveillance plane,

while A′ is the projection of A on the physical plane with

height |AA′| = h. When a tagged object B moves along a

trace, suppose at an arbitrary time t, its distances to A and

A′ are |BA| = d and |BA′| = s respectively. In backscatter

systems, the RF phase is a basic attribute of a wireless signal
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Image plane

Physical plane

Fig. 3: Geometric relation of a moving

object and an RFID antenna / camera

(a) Raw phase (b) Smoothed phase

Fig. 4: Phase measurements. (a) Raw phase sequence. (b) We smooth the

phase by splicing adjacent split parts together.

and can be reported by commercial RFID readers [9]. Then

the tag’s phase shift [10] can be expressed as:

θ(t) =

(

2π

λ
× 2d(t) + c

)

mod 2π

=

(

4π

λ

√

h2 + s2(t) + c

)

mod 2π,

(2)

where λ is the wavelength, and the term c denotes a constant

phase shift caused by the devices hardware characteristics.

Note the total distance is 2d because the signal traverses a

double distance back and forth in backscatter communication.

Fig. 4(a) gives an example of the measured phase sequence.

It is split into many short discontinuous parts due to the mod
operation in Eqn. 2. For better analysis, we first smooth the

curve by splicing adjacent split sub-sequences together. The

smoothed phase is shown in Fig. 4(b).

As discussed in the previous section, for two points, the

distance between them in the real physical world is propor-

tional to that in the image pixel plane. Formally, the following

expression holds:
s(t)

S(t)
=

h

H
, (3)

where S is the pixel value of s in the image, namely the

distance in pixel from the image center OI to the image

point BI of B. H is a constant factor representing the pixel

distance from the principal point to the image plane, which

can be calculated through the camera’s intrinsic parameters.

Substituting Eqn. 3 into Eqn. 2, we have

θ(t) =
4πh

λ

√

1 +
S2(t)

H2
+ c. (4)

Here we omit the mod operation in Eqn. 2 as we have

smoothed the raw phase. Record

√

1 + S2(t)
H2 as γ(t). Since

S(t) =
√

x2
I + y2I , γ can be directly computed with the

object’s image-level trajectory. For the sake of description, we

call variable γ as translating factor in the rest parts of this

paper. Apparently, θ is linearly dependent on parameter γ as

shown below:

θ(t) = a× γ(t) + b. (5)

B. Measuring Tag-Object Consistency

Since there are gaps between the frame rate (30 fps) of

video camera and reading rate (about 50Hz) of RFID readers.

The collected samples of image traces and phase sequences

may not align with each other. We first preprocess the two

types of data with Hermite interpolation method to make

them align in time domain. Then given a phase sequence

Θ = {(t1, θ[t1]), (t2, θ[t2]), · · · } (θ[t] is the acquired phase

value at time t) and a translating factor sequence Γ =
{(t1, γ[t1]), (t2, γ[t2]), · · · }, if they are consistent with the

same moving target, they should satisfy a linear relationship

according to Eqn. 5. Therefore, we utilize linear regression

to model the data and estimate the coefficients a and b.
Mathematically, a least squares estimator is applied, which

minimizes the sum of squared discrepancies between observed

data and their expected values:

argmin
a,b

∑

i

ε2i , where εi = θ[ti]− (aγi + b). (6)

Further, to evaluate the goodness-of-fit of the linear relation,

we utilize the coefficient of determination (R-squared, denoted

R2), which measures the proportion of the variance in the

dependent variable that is predictable from the independent

variable:

R2 = 1−

∑

i ε
2
i

∑

i

(

θ[ti]− θ̄
)2 , (7)

where θ̄ denotes the mean of the observed phase data.

As we know, the linear relation in Eqn. 5 only holds

well if the phase and trajectory are acquired from the same

moving object. Thus, the value of R-squared can indicate

the consistency between a given pair of tag and object to

some extent. In other words, a higher R2 means the tag

is more likely to belong to that moving object because the

corresponding phase and trajectory data fit better under linear

regression.

V. REAL-WORLD TARGET IDENTIFICATION

In this section, we will elaborate on how to recognize the

real-world identity of each moving object with only its image

trace as input.
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(d) Target identification

Fig. 5: Workflow of identification schema. (a) We first construct a complete graph with its two sides representing the moving

objects and tags. (b) Then we prune invalid edges according to their z-score values. (c) We obtain an agreement matrix utilizing

tag’s RSSI. (d) We eventually solve an optimization problem to identify all the image traces.

A. Matching in Bipartite Graph

Suppose that we obtain m motion blobs’ image trajectories

and n tags’ phase sequences. Note that here m ≥ n as one tag

may corresponds to more than one traces when it moves out

of the imaging range and later comes back. To identify and

get the traces of all the tagged objects, we try to assign each

image trajectory to a possible phase sequence.

To be specific, we establish a complete bipartite graph

G = (U,V,E), where each vertex in U represents a mobile

object with a known image trajectory and each one in V

represents an RFID tag with a certain phase sequence. U and

V are two disjoint and independent sets, where every vertex in

U is connected to every vertex in V, as shown in Fig. 5(a). For

an arbitrary edge e ∈ E that connects a given pair of vertices

(u, v) where u ∈ U, v ∈ V, we assign a weight w(u, v) to

e, which is set to the same value as the R-squared calculated

through Eqn. 7.

We first try to find the maximum-weight matching in the

bipartite graph G, by exploiting the Hungarian matching

algorithm, also called the Kuhn-Munkres algorithm [11].

B. Pruning Invalid Edges

Once the maximum-weight matching is found, we get a

one-to-one mapping of motion blobs and RFID tags, which is

most likely to be consistent with the ground truth. But such a

mapping can not be directly used to identify targets because of

the following two reasons. First, the mapping results are not

entirely credible in certain cases. Consider two objects with

translating factors γ1(t), γ2(t) that satisfy γ1 = kγ2 (k is a

constant), then they both would acquire the same goodness-of-

fit with a given tag under linear regression (i.e., their weights

in the bipartite graph are very similar), which makes them easy

to be falsely matched. Besides, due to imperfect measurements

caused by surrounding noise in a practical indoor environment,

the trajectory and phase data may not fit very well even if they

are acquired from the same tag.

Recalling Eqn. 5, we come to the following key observation.

Observation V.1. All correctly matched pairs of objects and

tags should maintain the same coefficient a = 4πh
λ

in the

linear model.

Given the maximum-weight matching M (|M| = n), it is

reasonable to assume that most of the edges in M agree with

the ground truth. The detailed evaluation results is given in

Section VI. Let a1, a2, · · · , an be the linear coefficients (com-

puted through Eqn. 6) of all the connected object-tag pairs in

M, with their mean value ā and variance σ2. According to

the aforementioned observation, we can use ā as an estimate

for the true linear term 4πh
λ

. Since most edges (i.e., object-tag

pairs) in the original bipartite graph G could be invalid1, we

try to prune such edges first. Then, for any edge ek in G with

coefficient aek , we calculate the z-score, which measures a

value’s relationship to the mean of a group of values, in units

of the standard deviation. Formally,

zk =
aek − ā

σ
. (8)

A higher z-score indicates the value has larger deviation from

ā, which means such edge is more likely to be invalid. We set

a predefined threshold η. If zk > η, the corresponding edge

is regarded to be invalid and further removed from the graph

(shown in Fig. 5(b)).

C. Acquiring Agreement Among Edges

As we mentioned before, the measured phase jumps when

it approaches 0 or 2π because of the mod operation [12].

Therefore, if two traces always maintains a distance difference

1Saying an edge is invalid means that the associated tag and motion blob
are almost impossible to be matched.
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of λ/2 in Eqn. 2, then their phase values would be identical,

which results in the ambiguity of tags. To deal with this,

we propose to incorporate the RSSI attribute of the tag’s

backscatter signal.

In addition to the RF phase, it is also possible to gain the

received signal strength indicator (RSSI) utilizing commercial

RFID readers. RSSI is a measurement of the power present

in a received radio signal, which is inversely proportional

to the distance between the reader and tag. Compared to

the phase, the collected RSSI is more sensitive to environ-

mental surroundings, and thus prone to contain more errors.

Here in this work, we mainly exploit the RSSI attribute

to qualitatively analyze the distance relationship of different

tags, offering a beneficial supplement to the phase. Provided

with two tags’ RSSI data Ri = {(t1, ri[t1]), (t2, ri[t2]), · · · }
and Rj = {(t1, rj [t1]), (t2, rj [t2]), · · · }, we compare their

values element-by-element and convert the result into a

vector −→xi,j that contains only ‘0’s and ‘1’s. The pth el-

ement in −→xi,j is set to ‘1’ if ri[tp] > rj [tp] and ‘0’

otherwise. Similarly, given two objects’ image trace dis-

tances Sk = {(t1, Sk[t1]), (t2, Sk[t2]), · · · } and Sl =
{(t1, Sl[t1]), (t2, Sl[t2]), · · · }, we also compare their values

and get a vector −→yk,l. The pth element in −→yk,l is set to ‘1’

if Si[tp] > Sj [tp] and ‘0’ otherwise.

Eventually, we propose a metric named agreement to eval-

uate the consistency between edges (object-tag pairs) in graph

G. The agreement of any two edges e = (ui, vk) and

f = (uj , vl) is defined as the similarity of their associated

vectors −→xi,j and −→yk,l as below:

agreement(e, f) =

−→
1 T · (−→xi,j ⊕

−→yk,l)

|−→xi,j |
. (9)

Here, ()T denotes the matrix transpose, ⊕ represents the

exclusive OR, · represents the dot product operation, and

the lengths of −→xi,j and −→yk,l are the same. The value of an

agreement would fall inside [0, 1], and a higher agreement

indicates that the related edges are more consistent with each

other when evaluated in terms of the RSSI.

D. Identifying All the Targets

After filtering invalid edges with the technique in Section

V-B, suppose that there are N connected pairs in total remain-

ing in the graph. As shown in Fig. 5(c), we can construct an

N × N dimensional matrix Q with the computed pair-wise

agreement value via Eqn. 9. In order to identify the correct

mapping in the graph, our algorithm tries to select a group of

edges with as high weights and agreement values as possible.

Let X (N × 1 dimension) be the selection result where an

element equals 1 if the corresponding edge is selected, and 0
if not. Here, there are two constraint conditions: 1) a motion

blob can only be mapped to one RF signal, which means that

if there is more than one edge that connects the same vertex

in U, they can not coexist; and 2) multiple traces can link

to the same tag, because a moving target may go outside the

camera’s surveillance region and later come back, and in this

condition, there would be more than one traces for the same
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Fig. 6: Experiment setup. The RFID antenna and camera are

deployed together. Tags are attached on moving objects.

tag with no overlapped time interval existing. Considering

the above two constraint conditions, we further construct a

compatibility matrix P (consists of 0 and 1), where each row

represents an incompatible case. In particular, the ‘1’s in a

row indicates the related edges are mutually incompatible.

Eventually, the selection of object-tag pairs can be formalized

into the following optimization problem [13]:

max
X

µXTQX+WX, (10)

PX ≤ 1,Xi ∈ {0, 1},

where W is the matrix of edges’ weights, and µ is a user-

defined constant parameter that controls the effect of agree-

ment on the result. µ is chosen to be 0.5 by default. We

can adjust the value of µ according to the precision of RSSI

reported by the reader in practice. As shown in Fig. 5(d), after

solving the optimization through linear programming, we can

finally get a mapping between motion blobs and RFID tags,

and further, accomplish the goal of object identification and

tracking.

E. Putting Things Together

In summary, the whole workflow of our object identification

schema is outlined in Fig. 5. First, we establish a complete

bipartite graph G where the two sides represent the moving

objects and RFID tags respectively. The weight of each edge

is measured by the R-squared of their associated data. A

maximum-weight matching M is found in the graph with

the Hungarian algorithm. Second, we compute a z-score for

each edge in G utilizing the data from M and prune those

invalid edges with z-scores above a threshold. Third, we

calculate an agreement value for any two edges remaining in

the graph by incorporating tags’ RSSI information. Thus an

inter-edge agreement matrix is acquired. Finally, we abstract

a linear optimization problem with graph weights, agreement

matrix, and constraint conditions. The solution to this problem

is outputted as the final mapping between targets and tags.

Furthermore, by combining the identification and tracking
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Fig. 7: Tracking result

(a) Goodness-of-fit (b) Linear coefficient

Fig. 8: Linear fitting results

results, we acquire the accurate identity and trajectory of each

target in the surveillance region.

VI. IMPLEMENTATION & EVALUATION

We implement Tagview using COTS RFID and camera

equipment and conduct performance evaluation in our lab

environment as shown in Fig. 6.

A. Building Prototype

Hardware. We adopt an Impinj Speedway R420 reader [14]

which is compatible with EPC Gen2 standard and operates

during the frequency band of 920.5 ∼ 924.5 MHz by default.

The reader is connected to our host via Ethernet. One antenna

with circular polarization and 8 dBi gain is employed, with

size of 225mm× 225mm× 33mm. We experiment on four

types of tags from Alien Corp [15], modeled “Squiggle”,

“Short”, “Square” and “2×2”. The camera we use is an AONI

C30HD with 1080P resolution and frame rate of 30 fps.

Software. Our implementation involves the LLRP (Low

Level Reader Protocol) [16] to communicate with the reader.

Impinj readers extend this protocol to support the ID, phase

and RSSI readings of tags. The object tracking method is

implemented in Python using PyTorch as the deep learning

library and CUDA 9.0 as the GPU computing platform. We

use a Lenovo PC to run all our algorithms and as the host to

connect to the reader under LLRP. The machine equips Intel

Core i5 CPU running at 2.3GHz and 8GiB memory.

Baseline. We emulate a mobile object via a toy train on

which a tag is attached, moving on tracks of different shapes

(linear or arc-shaped) with a moderate speed. The ground

truth of tag-object combinations are manually collected in our

experimentation.

B. Accuracy of Multi-Object Tracking

We first evaluate the multi-object tracking accuracy of

Tagview in the image. For object detection purpose, we attach

a predefined pattern (e.g., checker pattern) onto each toy trains.

Then we train the SSD model as described in Section III to

detect such patterns in every image frame. To assess the final

tracking performance, we lower the frame rate of the video

and collect the ground truth by manually annotating the center

locations of the toy trains at every video frame. Fig. 7 shows

an example of tracking results collected in our experiments.

There are three moving objects in the scene with different

shapes of trajectories. The ground truth locations are marked

as ‘+’ in black and the tracking results output by our tracker

are labeled as ‘◦’ in green. Empirical analyses indicate that

the mean error distance of our tracking method is 3.76 pixels

in x-axis, 3.53 pixels in y-axis and 4.82 pixels (corresponding

to a 5.36mm physical distance) in combined dimension with

standard deviation of 3.42 pixels. We believe such mm-level

accuracy is relatively high and sufficient for most applications.

C. Effectiveness of Linear Regression Model

As described in Section IV-B, we propose to use the

goodness-of-fit (R-squared) of a linear model to measure the

consistency between a given pair of tag and moving object. To

assess its effectiveness, we carry out 50 groups of experiments.

Specifically, we vary the number of tagged objects from 2

to 6, and control them to move on a desktop with a size

of 1.5m× 3m. Each time we collect the phase data of

attached tags and image information of moving objects. The

two boxplots in Fig. 8 show the distribution of linear fitting

results with regard to the R-squared and linear coefficient

respectively. The ‘correct’ box represents the true tag-object

pairs while the one labeled ‘incorrect’ is acquired from the

false fittings. From Fig. 8(a) we observe that the correct fittings

have apparently larger R-squared values compared to the false

ones. This also conforms to our assumption in Section V-B

that most of the edges in the maximum-weight matching are

correct (i.e., accord with the ground truth). Besides, from

Fig. 8(b) we can see that the linear coefficients of the correct

fittings exhibit a denser distribution. This is consistent with

our observation V.1 that all correctly matched tag-object pairs

should maintain the same linear coefficient a.

Our experiments show that if we only utilize the Hungarian

algorithm (to find the maximum-weight matching), the target

identification accuracy can reach 0.91 on average. But as

we discussed before, it can not deal with special cases, for

example, one tag relates to multiple motion traces, etc.
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D. Performance of Target Identification

1) Overall Identification Accuracy: The key to Tagview lies

in our identification schema which identifies every moving

target by assigning it to an optimal RF tag. To evaluate the

performance of our proposed schema, we make a comparison

study with prior work TagVision [3]. We consider the follow-

ing two situations: a) the camera’s intrinsic parameters are

unknown, which means we need to calibrate the camera first;

b) the intrinsic parameters are known in advance while the

extrinsic parameters remain unknown. Fig. 9 plots the target

identification accuracy, which is defined as the ratio of the

number of successfully identified object traces to the total

number of traces.

We find that both Tagview and TagVision achieve high

precision (ratio of 0.98 on average) if the camera’s parameters

are known. However, if we do not perform camera calibration

or the camera’s relative position changes, TagVision would fail

(accuracy drops significantly below 0.30) because it requires

to learn the real-world trajectories of moving objects, while

our system can still work in such scenario as we only need to

perform image-level object tracking.

2) Impact of Tag Number: Since our system focuses on

the more pervasive problem of identifying multiple targets,

we further carry out experiments to evaluate Tagview’s per-

formance when there are a different number of tagged objects.

We vary the number of tagged objects from 2 to 6 and plot the

averaged identification accuracy in Fig. 10. It can be seen from

this figure that with the number of tags increasing, the mean

accuracy of identifying tags decreases a little bit, from 0.99
when there are only two tags, to about 0.96 when there are six

tags. This is reasonable because, with more tagged objects, it

becomes more difficult to recognize their correct traces, and

thus introducing more errors. Generally speaking, our method

works well at identifying tags’ trajectories even when there

are multiple tagged objects.

# of separated traces 2 3 4

Precision 0.99 0.98 0.97
Recall 0.99 0.97 0.97

TABLE I: Precision and recall of identifying separated traces

3) Impact of Tag Diversity: To study the feasibility of

different types of tags, we experiment on four tag models,

namely “Squiggle”, “Short”, “Square” and “2×2” to study the

influence of tag diversity. All these tag types have different

antenna sizes and shapes as depicted in Fig. 11. For each

tag model, the result is averaged from 50 experiments with

the number of tags varying. From the figure, we observe

that the accuracies of all models maintain at a high value

(more than 0.97), but there exist some differences among them.

Squiggle, Short and 2 × 2 have very close accuracies, while

Square model exhibits a slightly lower accuracy. This can be

explained by the size of tag’s antenna, because Square has a

more compact volume (only 22.5mm× 22.5mm) compared

with the other three types. Generally speaking, the tag with

a larger antenna could absorb more energy from the reader,

making its backscattered signal stronger (i.e., higher SNR) and

thereby outputting more precise result. In our experimentation,

we use model “Squiggle” by default.

4) Robustness to Separated Traces: When an object moves

out of the camera’s monitoring area, and then comes back

after a while (note that such process may even repeat), there

would be several separated traces that belong to the same

ID/tag. A well-designed system could be able to deal with the

above special situations. To test whether our system is able

to robustly identify the separated traces with the same ID, we

design the following experiment. We let several tagged objects

move, and each time one of these objects may generate 2 to

4 different traces in the video. Table I presents the averaged

precision and recall of target identification when the number

of traces changes. From the table we observe that in all cases,

the identification precision and recall maintain at a high level

(≥ 0.97), which means Tagview can accurately identify each

moving target, even though a tag may have multiple image

traces. This also validates the robustness of our proposed

identification schema.

With RSSI Without RSSI

Precision 0.97 0.57
Recall 0.97 0.55

TABLE II: Precision and recall of identifying similar phases
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5) Robustness to Similar Phase Sequences: As mentioned

in Section V-C, there would be ambiguity when two tags’

phase sequences are similar. So Tagview incorporates the

RSSI information to make a further inspection. To test our

system’s robustness to similar phase sequences, the following

experiment is conducted. We make some objects move on

a few pre-designed tracks that would generate similar phase

sequences. Here the tracks should have a distance difference

(to the antenna) of λ/2 ≈ 16 cm in theory. We also make a

comparison study with a method that does not utilize tag’s

RSSI. Table II depicts the averaged precision and recall of

target identification. We find that both the precision and recall

drop to a big extent (the precision drops from 0.97 to 0.57
while the recall drops from 0.97 to 0.55) if we do not make use

of tag’s RSSI information. On the contrary, the performance of

our system would not be impaired if we incorporate the RSSI.

This is easy to understand because when tags have similar

phase sequences, they are difficult to be distinguished purely

based on the phase metric. As the RSSI is sensitive to the

distance, it is pragmatic to be utilized to roughly infer distance

relationship among tags.

VII. RELATED WORK

We briefly review the literature that is related to our work

in this section.

Object detection and tracking in CV. First step in the

process of object tracking is to identify objects of interest in

the video sequence. Pioneer methods include: a) frame differ-

encing which works by calculating the difference between two

consecutive images [17]; b) optical flow method [18] which

computes the image optical flow field and does clustering

according to the optical flow distribution characteristics of

image; c) background subtraction [19] which is achieved by

building a representation of the scene called the background

model and then finding deviations from the model for each

incoming frame. More recently, with the advancement of deep

learning techniques, significant improvement has emerged for

object detection. Overfeat [20] is one of the first modern

one-stage object detectors based on fully convolutional deep

networks, which performs in a multiscale sliding window

fashion via a single forward pass through the CNN. Redmon

et al. [21] propose YOLO, a unified detector casting object de-

tection as a regression problem from image pixels to spatially

separated bounding boxes and associated class probabilities.

In order to preserve real-time speed without sacrificing too

much detection accuracy, Liu et al. [4] propose SSD.

Given the object regions in the image, it is then the tracker’s

task to perform object correspondence from one frame to

the next to generate the tracks. The main tracking categories

involve: a) point tracking where objects are represented by

points, and the association of the points is based on the

previous object state including position and motion [22];

b) kernel tracking where kernel refers to the object shape

and appearance (e.g., an elliptical shape with an associated

histogram) [23]; c) silhouette tracking which is performed by

estimating the object region in each frame [24]. The authors in

[6] propose a simple online tracking framework using Kalman

filter and Hungarian method for the tracking components.

RF-based localization. An increasing amount of research

in wireless domain has focused on location sensing in the

past years [25]–[27]. Early attempts rely on RSSI as the

fingerprint or distance ranging metric for localization purpose

[28]–[30]. There is also growing interest in utilizing phase

information to locate tags. One typical solution is to estimate

the angle-of-arrival (AoA) which works by measuring the

phase difference between the received signals at different

antennas [31]–[33]. RF-IDraw [34] uses a few antenna pairs

with different separations to trace the detailed shape of an RF

sources trajectory. The idea of synthetic aperture radar (SAR)

is also introduced to wireless localization domain. The authors

in [2] realize real-time tracking of mobile tag to a very high

precision by exploiting the tags mobility to build a virtual

antenna array. Ubicarse [35] performs a new formulation of

SAR on handheld devices twisted by their users to enable

fine-grained indoor localization.

Some literature in tracking field has also explored the

possibility by combining RF and CV techniques. Nick et al.

[36] develop a camera-assisted localization algorithm based

on a constrained unscented Kalman filter with tag’s RSSI

measurements. However, we know the RSSI is a relatively

sensitive metric and thus easy to be influenced by surround-

ing environment. [3] proposes a fine-grained target tracking

schema by assigning the identified tag’s phase sequence to

the most possible track of moving objects acquired with image

processing. Although high accuracy has been demonstrated, it

only focuses on the tracking of one tagged target, and is not

convenient for repeated usage. Compared against the above

methods, our work offers a more universal and user-friendly

solution for the identification and tracking of multiple targets

without sacrificing accuracy.

VIII. CONCLUSION

This work presents an RFID-based pervasive identification

and tracking system for multiple objects with the aid of vision

techniques. Our key innovations include leveraging a pair

of properly deployed RFID antenna and video camera, and

designing a novel identification schema that works with only

image-level trajectory information. Experimental evaluations

demonstrate that Tagview can achieve a mean target recog-

nition accuracy of 0.98 on average with strong robustness to

various circumstances. We believe our system could promote

more possibilities in RFID-based tracking area.
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