
Privacy-Preserving Outlier Detection with High

Efficiency over Distributed Datasets

Guanghong Lu, Chunhui Duan∗, Guohao Zhou, Xuan Ding, Yunhao Liu

School of Software and BNRist, Tsinghua University, China
∗Corresponding author

Email: {lugh60, duanch09, zhough19, dingx04, yunhaoliu}@gmail.com

Abstract—The ability to detect outliers is crucial in data
mining, with widespread usage in many fields, including fraud
detection, malicious behavior monitoring, health diagnosis, etc.
With the tremendous volume of data becoming more distributed
than ever, global outlier detection for a group of distributed
datasets is particularly desirable. In this work, we propose PIF
(Privacy-preserving Isolation Forest), which can detect outliers
for multiple distributed data providers with high efficiency and
accuracy while giving certain security guarantees. To achieve the
goal, PIF makes an innovative improvement to the traditional
iForest algorithm, enabling it in distributed environments. With a
series of carefully-designed algorithms, each participating party
collaborates to build an ensemble of isolation trees efficiently
without disclosing sensitive information of data. Besides, to deal
with complicated real-world scenarios where different kinds
of partitioned data are involved, we propose a comprehensive
schema that can work for both horizontally and vertically
partitioned data models. We have implemented our method and
evaluated it with extensive experiments. It is demonstrated that
PIF can achieve comparable AUC to existing iForest on average
and maintains a linear time complexity without privacy violation.

Index Terms—Outlier detection, Privacy-preserving, Dis-
tributed data, PIF

I. INTRODUCTION

The volume of data is practically exploding by the day

as more and more information is collected and stored. But

due to a variety of reasons, including but not limited to

equipment anomaly, noise interference, malicious activity,

human error, the presence of outliers is usually inevitable in

the acquired data. Generally speaking, an outlier is described

as ‘an observation (or subset of observations) which appears

to be inconsistent with the remainder of that set of data’

[1], [2]. Outliers are considered important because they often

indicate rare but significant events and thus can promote

critical actions to be taken in a wide range of applications.

For example, anomalous behavior in credit card transactions

could imply fraudulent activities such as stolen cards; on

a factory production line, outliers in specific features of

products may pinpoint manufacturing faults; and anomalies

in an MRI image may indicate the existence of a malignant

tumor. Consequently, outlier detection (also termed as anomaly

detection) has always been a very crucial task and forms an

essential research branch in data mining, with widespread use

in domains such as activity monitoring [3], fraud detection,

health diagnosis [4], etc.

There are numerous types of outlier detection approaches

put forward in recent years, which can be categorized into

supervised methods and unsupervised ones, based on whether

we have a good understanding, or sufficient labeled training

data, for both the normal and abnormal data points. As in most

practical applications, there may be no training data available,

here in this work, we focus on the unsupervised algorithms

without assuming prior knowledge about the acquired data.

State-of-the-art techniques mainly include: 1) distance-based

algorithms, which view a data point as an outlier if it has a

large deviation from its nearby neighbors [5], [6]; 2) density-

based algorithms, which assumes the density around an outlier

is considerably different to that around its neighbors [7], [8],

[9], [10], [11]; 3) clustering-based algorithms, whose core

principle is that outliers are not within or nearby any large

or dense clusters [12], [13]. Nevertheless, these methods are

typically designed to deal with centralized small-scale datasets

because of their high computation complexity, or in other

words, the data which needs to be analyzed (or mined) should

be centrally stored as a single repository of small size.

As a matter of fact, the growing amount of data itself is

inherently becoming more distributed among multiple sources

instead of centralized in a single source nowadays, which in

turn requires the outlier detection task to be performed in a

distributed way. For instance, in the medical field, patients’

medical data is often not collected and stored in a single

institution, but scattered across different sites, such as various

hospitals, health care centers, and pharmacies. Hence, the

information in one institution is usually incomplete, and to

detect outliers (i.e., representing patients in abnormal physical

conditions), it is necessary to comprehensively analyze the

distributed information from several datasets. One straight-

forward way to achieve this is to integrate all the databases

under one roof, but this strategy is usually unfeasible in

practice, because the integration procedure of the massive

multi-sourced data may not only cause prohibitively high

cost and inefficiency, but also raise privacy concerns and

result in the leak of sensitive information. For a variety of

practical outlier detection applications, privacy preservation is

a fundamental need where anomalies should be successfully

detected while giving formal guarantees on the amount of

private information disclosed. Recalling the aforementioned

example in the medical domain, it is desired to efficiently

identify the global outliers across multiple medical institutions

without revealing any private information (patients’ personal

profile) to the untrusted.

In this work, we propose PIF (abbreviation for Privacy-

preserving Isolation Forest), a privacy-preserving and efficient

outlier detection approach with high accuracy for distributed

data sources. To accomplish the goal, we design a novel struc-

ture based on traditional Isolation Forest (iForest) technique

[14], which works by first constructing an ensemble of trees

(called as iTree or Isolation Tree) with the given data and then

detecting abnormal instances as those averagely isolated closer

to the roots of the trees. Although the sub-sampling ability

of iForest makes it applicable to extremely large data size

with extraordinary detection performance, it can only handle

centralized databases. Here in our work, we try to improve

the traditional iForest for distributed scenarios taking privacy

into consideration. By tailoring a series of secure algorithms

regarding sub-tree construction and merging, PIF can work

over multiple distributed datasets without privacy breach while

maintaining high efficiency and accuracy. Besides, in actual

applications, data can be distributed or partitioned among

multiple parties either in a horizontal or vertical manner.

We elaborately custom our method for both scenarios. The

basic idea of PIF is sketched below. Each distributed party

first generates a Privacy-preserving Isolation Sub-Tree (PIST)

using their own data while considering the distribution of

instances and attributes among all the parties. Then all parties

collaborate to merge their PISTs into one Privacy-preserving

Isolation Tree (PIT). Finally, with an ensemble of PITs, PIF

can predict global outliers as those instances which have short

average path lengths on these PITs.

Contributions. In summary, this paper makes the following

key contributions:

• We propose an innovative approach to detect global out-

liers for distributed data sources. With multiple carefully-

designed solutions, our method can insure data privacy

without disclosing sensitive information.

• We extend the conventional iForest structure to enable it

in distributed scenarios. A series of algorithms are devised

to achieve high efficiency and accuracy with affordable

computation and communication overhead.

• As a comprehensive outlier detection schema, PIF applies to

both horizontally partitioned and vertically partitioned data

models. The accompanying challenges are well analyzed

and addressed.

• We have implemented and evaluated PIF with extensive

experiments over various datasets. The final AUC is com-

parable to traditional iForest, and the actual CPU time goes

linearly with the number of parties, which demonstrates the

practicality and effectiveness of our design.

Roadmap. The remainder of the paper is organized as

follows. We introduce background knowledge about our de-

sign in Section II. The technical details of PIF concerning

horizontally partitioned and vertically partitioned data models

are elaborated in Section III and Section IV respectively. We

!" #$$%! #$$%" #$$%#

!

"

!" #$$%! #$$%" #$$%#

#

$

!" #$$%! #$$%" #$$%#

%

&

!" ! " # $ % &

&$#$'& ('$)!*%

'()*+ !

'()*+ #'()*+ "

(a) Horizontal partitioning

!" #$$%! #$$%" #$$%#

!

"

!" #$$%! #$$%" #$$%#

#

$

!" #$$%! #$$%" #$$%#

%

&

!" ! " # $ % &

&$#$'& ('$)!*%

'()*+ !

'()*+ #'()*+ "

(b) Vertical partitioning

Fig. 1: Illustration of distributed datasets

present the implementation and evaluation of our method in

Section V. We review related work in Section VI, and finally

conclude this paper in Section VII.

II. PRELIMINARY

This section begins with background knowledge about data

partitioning, followed by a brief introduction to the Isolation

Forest and an explanation of the security model we adopt.

A. Data Partitioning

The data in our scene is distributed or partitioned across

several parties. There are mainly two ways to partition the

data: horizontal partitioning and vertical partitioning [15], as

depicted in Fig. 1. In both of these cases, we assume that there

are total k different parties P1, P2, . . . , Pk that hold data, and

m attributes and n instances in the data.

Horizontally partitioned data. Here multiple parties hold

the same set of attributes about different instances. Each party

collects information about all m attributes A1, A2, . . . , Am,

and there is no intersection of instances between any two par-

ties. Formally, party Pi has ni instances, such that
∑k

i=1 ni =
n. A typical example of horizontal partitioning is that banks

store similar credit card transaction information but for differ-

ent customers.

Vertically partitioned data. Here each party holds a dif-

ferent subset of the attributes for instances in the data store.

Party Pi collects information about mi (mi < m) attributes,

Ai,1, Ai,2, . . . , Ai,mi , for all the instances, and there is no

intersection of attributes between any two parties. The total

number of attributes,
∑k

i=1mi = m. For example, in a sensor

network monitoring a certain area, there could be multiple

types of sensors reporting entirely different information about

environmental parameters (such as temperature, humidity, il-

lumination). In case that one attribute exists in more than one

party, we only use one copy of them.

B. Isolation Forest

Isolation Tree. The term isolation means ‘separating an

instance from the rest of the instances’. Since outliers have

two potential characteristics: ‘few and different’, they are more

susceptible to isolation than normal points. The work [14]

uses a binary tree structure to realize the isolation, which

!

"

#

$

%

&

'

(

)

Fig. 2: Illustration of iTree

is called iTree (or Isolation Tree). It first samples a subset

of data X = {x1, x2, . . . , xψ} (ψ < n) randomly from the

original dataset. Then an iTree is generated from top to bottom,

where the root contains all the data samples X . Each node

is recursively divided by randomly selecting an attribute and

a split value between the minimum and maximum values of

this attribute, until either: a) the tree reaches a height limit, b)

|X| = 1, or c) all instances left in the node have equal values.

Every instance would be finally isolated to a leaf node when

an iTree is fully grown. Fig. 2 gives an illustrative example of

the random partitioning process. Normal points are denoted in

green and black while the anomaly is in pink. It is clear from

the figure that the path length (which represents the number of

partitions) of anomalies is far shorter than normal instances.

Anomaly score. Each iTree can be seen as a weak classifier,

which can further compose the iForest (also called as Isolation

Forest) based on ensemble learning to achieve better results.

Define h(x) of an instance x as the path length on an iTree,

which is measured by the number of edges x traverses from

the root node until terminated at a leaf node. Formally, to

reflect the degree of anomaly for an instance x, an anomaly

score s is computed as expressed below [14]:

s(x, ψ) = 2−
E(h(x))
c(ψ) , (1)

where E(h(x)) denotes the average of h(x) from a collection

of iTrees (i.e., an iForest). c(φ) is used to normalize h(x) and

defines the average of h(x) given ψ. Namely,

c(ψ) = 2H(ψ − 1)− 2(ψ − 1)/ψ, (2)

where H(i) is the harmonic number which can be estimated

by ln(i) + 0.5772156649 (Euler’s constant). From Eqn. 1 we

can observe that: when E(h(x)) → c(ψ), s → 0.5; when

E(h(x)) → 0, s → 1; and when E(h(x)) → ψ − 1, s → 0.

This means that if the anomaly score of an instance approaches

1, it is likely to be an outlier.

C. Security Model

We are studying how to detect outliers in a distributed

environment involving multiple parties without privacy leak-

age, so security issues should be considered. In this part, we

will introduce our security model and the necessary privacy

guarantees that we can provide.

Model assumptions. There are essentially two types of

adversaries in Secure Multi-Party Computing (MPC): ma-

licious adversaries and semi-honest adversaries. Malicious

adversaries can deviate from the protocol instructions and

follow an arbitrary strategy. For example, they may provide

simulated or malicious data, disclose information to others,

and collude with each other. A semi-honest adversary follows

the protocol instructions, but it is curious and may record all

intermediate results in the cooperation and try to get extra

information based on these intermediate results. The semi-

honest adversary model usually comes at an affordable cost

and is more commonly used in MPC. In this paper, we assume

that all k parties(k ≥ 3) are semi-honest and non-colluded,

which means they will not share any information that they are

not explicitly instructed to share with other parties. These are

standard assumptions in related literature and apply to many

real-life situations.

Privacy consideration. Here, we consider not only the

privacy of users (original data), but also the privacy of partic-

ipating parties (data characteristics).

a) The privacy of original data. This means any attribute

value of an arbitrary instance (e.g., a patient’s ‘age’ value in the

medical information database) cannot be disclosed, and even

the valid value range is nearly impossible to be inferred. With

such consideration, we can completely protect the privacy of

users.

b) The privacy of data characteristics. This means that

other parties cannot learn the properties of data (e.g., the

age distribution of patients in a hospital) from the related

intermediate results, and even the valid value range of these

properties can hardly be inferred. With such consideration, we

can completely protect the privacy of parties.

III. SOLUTION FOR HORIZONTALLY PARTITIONED DATA

In this section, we will introduce our privacy-preserving

outlier detection solution for horizontally distributed data.

A. Limitations of Prior Work

The key rationale of iForest is to construct a collection of

iTrees each time with a small size of sampled data. And sub-

sampling is conducted by the random selection of instances

without replacement. Prior art [16] leverages the concept of

iForest to enable secure outlier detection for distributed data.

However, it is flawed in technical details, since it allows parties

to generate their own trees independently without considering

the data distribution among parties. Thus the premise of

random sampling is broken, which violates the principle of

the iForest algorithm and may result in detection errors.

Besides, it can only deal with horizontally partitioned data

and needs the participation of another two parties to complete

the security calculation. Moreover, the encrypted numbers are

mostly identical (e.g., most of them are ciphertexts of 0s),

making the ciphertexts easy to guess, which results in a low

level of security.

In contrast, our work offers privacy-preserving solutions to

detect outliers for both horizontally and vertically partitioned

datasets with high accuracy and efficiency, without requiring

the participation of third parties.

Preparation

(master)

Secret Sum

Rules of PIF Generation

Training

1 2 5

PISTs of PISTs of PISTs of

3 4 1 1 4 3 2

Merging:

1 0 0 2

0 0 3 0

0 0 4 3+

1 0 7 5=

5 0 0 0

4 1 1 0

0 2 0 0+

9 3 1 0=

Leaf sizes of :

Leaf sizes of :

Leaf sizes of :

Result :

Prediction

7 5 9 3

Outlier !

(master)

Secret Sum

1 0 1 0

Fig. 3: Solution for horizontally partitioned data

B. Design Overview

PIF involves four stages. a) The Preparation stage requires

all parties to cooperate to determine necessary parameters,

including sub-samples of the global data, attributes and split

values of partitions, etc. b) In the training stage, each party in-

dependently builds its Privacy-preserving Isolation Sub-Trees

(PISTs) with the sampled training data. c) In the merging

stage, all parties work together to merge their PISTs into a

collection of Privacy-preserving Isolation Trees (PITs), i.e., a

Privacy-preserving Isolation Forest, or PIF for short. d) Finally,

in the prediction stage, we can compute an anomaly score for

each test instance by passing it through the PIF.

More technical details about the above steps will be given

in the following parts.

C. PIF Workflow

Preparation. We decompose the building of a PIT into

several sub-trees each generated by a distributed party. A

collection of PITs form a PIF. There are some key parameters

during PIF construction. Let t denote the number of trees,

and ψ be the global sub-sampling size for each tree. The

training samples should come from all the parties. Therefore,

we raise our first question: how to implement secure random

sampling among all the parties without disclosing information

on the data size of each party? We utilize the Secure Sum

algorithm [17] to achieve this. Suppose there are k par-

ties P1, P2, . . . , Pk(k ≥ 3) with data sizes of n1, n2, . . . , nk
(n1 + n2 + · · · + nk = n) respectively. Let P1 be a master

among all the parties (the master can be elected through

common consensus algorithms like Raft [18]) to lead the

sampling task. The master first generates a random number r
such that r+n1 drops within a reasonable interval, and passes

r+n1 to party P2. Then similarly P2 generates n2 and passes

r + n1 + n2 to P3. This process repeats until all the parties

are involved. Afterward, the master can obtain the value of

r +
∑k

i=1 ni, which directly translates to n. Once the master

knows n, it further broadcasts to all the other parties. Finally,

for each sub-tree, Pi randomly samples a certain portion (i.e.,
ni
n
ψ) of its own data. Note that when r+n1 is random within

a reasonable interval and the parties do not collude, they can

never guess the output of other parties.

Once all parties finish their sub-sampling processes, the

rationale of training sub-trees is to recursively partition the

given training sets until instances are isolated or a specific tree

height limit l is reached. Therefore, parties also need to jointly

determine a series of data partitioning regulations including

attributes and split values. Fig. 3 illustrates an example, where

green and yellow represent different trees built with different

training sets. l is automatically set as: l = ⌈log2 ψ⌉ [14].

The attribute for each partitioning is randomly selected

by the master. After the attribute is determined, each party

Pi randomly chooses a candidate split value vi between the

minimum and maximum values of the attribute with its own

data, and encrypts vi with the master’s public key to get

Enc(vi). Then we leverage the reservoir sampling algorithm

[19] to transmit the split values for security purpose. The

master first passes Enc(v1) to P2. The probability that P2

chooses to pass Enc(v1) or Enc(v2) to P3 is both 1
2 . More

generally, suppose Pi receives Enc(v) from Pi−1, then it has

a probability of i−1
i

to transmit Enc(v) to Pi+1 and probability

of 1
i

to transmit Enc(vi). At last, the master decrypts the

message it receives to get the real split values. It is easy to

prove that all parties’ split values have the same possibility

to be selected. A party can learn nothing about other parties’

candidate values, and the master also does not know which

party the selected value comes from. The chosen split values

are also broadcast from the master to any other parties to

ensure the consistency of sub-tree structures.

Training. With the system parameters and partitioning

regulations specified in the preparation stage, each party can

independently train its own PISTs, as illustrated in Fig. 3. Our

PIST is similar to the iTree in the iForest algorithm, but differs

mainly in the following two aspects:

• Sub-sampling size. In an iTree, the number of samples

equals ψ. But in our design, the sampling size ψi of each

PIST equals ni
n
ψ while the global sub-sampling size of all

parties
∑k

i=1 ψi sums to ψ.

• Node termination condition. In traditional iTree, a node

would terminate partitioning if: a) the tree reaches a height

limit, b) the current node contains only one sample, or c)

all instances left in the node have equal values. However,

since multiple parties train their own PISTs independently

in our case, if we adopt the above strategy, PISTs would

grow into quite diverse structures (e.g., a leaf node in one

PIST may correspond to an internal node in another PIST).

To facilitate the later merging of several PISTs, we require

every node to keep partitioning until the tree height limit is

reached, even if its instances are already isolated. In this

way, every leaf node would maintain the same height l.

Merging. Now that we get all parties’ sub-trees, the next

question is: how to merge these sub-trees into a single PIT,

which further composes a PIF? Denote the pth (1 ≤ p ≤ t)
sub-tree built by party Pi as Ti,p. Note that the number of

leaf nodes in each sub-tree could be variant with a maximum

value of 2l, so here for the sake of computation, we assume

that there are total 2l virtual leaf nodes at the last (a.k.a. lth)

level of each sub-tree. Let w(i, p, q) be the size of the qth

(1 ≤ q ≤ 2l) node, i.e., number of instances contained. If a

virtual node does not have any instance, we set its size as 0
(w(i, p, q) = 0). Then to obtain the pth PIT, we try to merge

all k parties’ sub-trees by adding corresponding nodes at the

last level. Let u(p, q) be the merged value. We have,

u(p, q) =

k∑

i=1

w(i, p, q). (3)

It is worth mentioning that parties are forbidden to directly

share their own PISTs to each other for privacy purposes,

as certain characteristics of data could be learned with the

leaked PISTs. Under this premise, the problem we need to

solve now is how to sum up all w(i, p, q) in Eqn. 3 securely

and efficiently?

We describe our method in matrix form. For any party

Pi, it keeps a matrix Wi, where each row representing a

specific PIST and each column in one row denotes a leaf

node. The element Wi[p, q] at the pth row and qth column is

set to w(i, p, q). First of all, the master (i.e., P1) generates a

two-dimensional disturbance matrix R such that each element

in R + W1 is random within a reasonable interval (e.g.,

[0, 255] for ψ = 256). Then, it sends R + W1 to party

P2. Thus P2 can guess neither the real value of W1 nor its

data characteristics. Generally, each party Pi repeats to send

(R+
∑i

j=1 Wj) mod ψ to the next party P(i+1)%k until the

data is sent back to the master. After that, the master can

perform (R +
∑k

j=1 Wj − R) mod ψ to acquire
∑i

j=1 Wj

(also denoted by U), which directly corresponds to the final

PIF. The master would also broadcast U to all other parties. In

the end, every party would obtain a copy of U which is crucial

for prediction in the next stage. Note that after broadcasting the

PIF, each party would learn some specific characteristics of the

global sampled data (e.g., there are 20 instances whose ages

are over 30). However, it can not relate the data characteristics

to any single party.

Space complexity. The memory requirement of our method

remains at a low level for each party. The intermediate

results transmitted among parties are matrices with sizes of

t× 2l whose elements are natural numbers. According to the

evaluation of iForest [20], Area Under Curve (AUC) is near

optimal when sub-sampling size ψ = 256, and path lengths

usually converge well before t = 100 [14]. Therefore, we can

use an 8-bit binary to store each element in a matrix. Then

the size of intermediate data that a party needs to transmit in

our algorithm is about 25KiB, which is quite acceptable.

Prediction. Given a test instance x, to predict how likely it

is an outlier, we pass it through each PIT in a PIF, to derive a

Preparation

(master)

Rules of PIF Generation

Training

Binary strings of

Merging:

Prediction

100

000

100

100

split rule
001

001

001

000

split rule

Binary strings of

001

001

000

001

split rule
010

010

010

000

split rule

Binary strings of

000

010

010

010

split rule
100

100

100

000

split rule

20 1 1 30 1 0

00 01 10 11 00 01 10 11

(master)

(master)

Outlier !

20 1 1 30 1 0

00 01 10 11 00 01 10 11

Fig. 4: Solution for vertically partitioned data

path length h(x). Recall that in the prior work iForest, h(x)
is computed as the number of edges e an instance traverses

from the root to a leaf node plus an adjustment c(size), i.e.,

h(x) = e+c(size), where size denotes the size of the leaf node,

and c(·) is defined in Eqn. 2. The adjustment accounts for an

unbuilt sub-tree beyond the tree height limit. However in our

case, any instance would reach the tree height limit l due to our

tree building strategy. So we define h(x) as h(x) = l+c(size),
and if the size of a leaf node size ≤ 1, we set c(size) = 0.

With the derived h(t) for each PIT, an anomaly score s(x, ψ)
for the given instance can then be produced using Eqn. 1.

Note that the text instance may come from an arbitrary party.

If a specific party wants to assess its own instances’ anomaly,

it can directly accomplish this with its PIF. Otherwise, if a

party intends to make predictions on instances from a third

party, the prediction results should be transmitted between the

two parties in a secure way. There are many solutions in MPC,

which will not be discussed in this work due to the page limit.

IV. SOLUTION FOR VERTICALLY PARTITIONED DATA

When the data is vertically partitioned, each party collects

information about mi (mi < m) attributes for all n instances,

and there is no intersection of attributes between any two

parties. Then parties collaborate to accomplish the goal of

outlier detection without disclosing privacy.

Considering that the attributes of data owned by each party

are not complete, hence parties are incapable of constructing

their sub-trees independently. We try to deal with this problem

from another point of view. Suppose that the attributes of

partitions in the tree have been determined. Then if a party Pi
happens to have certain attributes, it can partition its samples

offline. An integrated tree can be built when all parties merge

their partitioning results together. Similarly, we will introduce

our solution in four stages: preparation, training, merging, and

prediction, as shown in Fig. 4.

Preparation. Parties still need to elect a master at first.

Since the instances owned by each party are the same, the

master would conduct the sub-sampling task locally on behalf

of other parties, and then sends the selected indexes of samples

to others. It is reasonable to assume that the master knows the

complete attributes (or the number of attributes at least) of

all parties. Even if not, the master can request the attribute

information from other parties respectively. Thereafter, the

master randomly chooses the attributes for partitions in the

tree, which is assumed to be a complete binary tree with height

l. It is worth noting that the master does not specify the split

values here.

Training. Since each party’s attributes are incomplete and

non-overlapping, instead of building a sub-tree, it only needs

to maintain the partitioning that is related to its attributes. For

ease of description, we first number the nodes in the final

complete tree from the top level to bottom, and for each level,

the number increases from left to right. Namely, denote the

root node as a1. Then the left child of a non-leaf node ai is

a2i, and the right child is a2i−1. The total number of non-leaf

nodes equals 2l − 1.

According to the partitioning attributes determined in the

preparation stage, each party independently chooses its own

split values and split rules. During the training, for each

instance, parties utilize a binary string str with a length of

2l − 1 to record their training results. str is initialized to

be all ‘0’s. If a party happens to hold an attribute bi which

corresponds to the node ai, it rewrites the ith element in the

string: str[i] =‘1’ if the instance is split to the right child,

or str[i]=‘0’ when split to the left child. As the example in

Fig. 4 depicts, for the green tree, party P2 holds attribute y
and generates a split rule (split to the left child if y < 2 or to

the right child if y ≥ 2). Since y corresponds to the third node

in the tree, then the binary string of an instance would be set

to ‘001’ if the attribute satisfies y ≥ 2 (i.e., the instance is

split to the right child). In this way, every instance is related

to a binary string, which indicates how it is partitioned in the

final tree.

Here note that to prevent the data characteristics from being

disclosed, each party needs to randomly select an instance

and then adopt its attribute value as the split value, instead of

directly choosing a split value in the interval of [min,max].
Because, if a party chooses split values of its attributes from

the value range [min,max], the sizes of leaf nodes in PITs

would easily be affected by the distribution of data. Thus other

parties may infer certain data characteristics. For example,

parties may deduce that the data is normally distributed if

the sizes of leaf nodes are unbalanced, and even estimate the

variance of data. Therefore, we require each party to randomly

select an instance and use its attribute value for partitioning.

In this way, the partitioning results would have no relation

with the original data characteristics, such that the data privacy

would not be exposed.

After training, each party gets a matrix Mi, where Mi[p, q]
denotes the binary string of the pth sampled instance trained

for the qth tree. Mi is then transmitted to the master for the

later merging stage.

Merging. The master XORs the received matrices from mul-

tiple parties, to obtain a collection of merged binary strings.

Concretely, it computes M1[p, q]⊕M2[p, q]⊕ · · · ⊕Mk[p, q]
(also called as merged string) for every possible p and q, like

Fig. 4 shows. Remember that it is the number of instances

contained in each leaf node that matters. For every instance

in a tree, we can convert its merged string to a path traversed

through the tree, which would finally terminate at a leaf node.

By further counting the number of instances owned by each

leaf node, we can construct a PIT (without split values) at last.

An ensemble of PITs constitutes a PIF.

Security analysis. Each party would obtain a collection of

PITs after merging. But from one PIT, a party can only learn

the size of each leaf node without knowing the partitioning

attributes and values for the internal nodes of other parties. To

put it simply, a party only knows that the sampled instances

are classified into several sets with known sizes, but has no

idea of how these instances are classified by other parties.

Prediction. The PIF each party gets lacks the necessary split

values in trees, so parties need to work together to perform

the prediction task. Given a test instance, if a party wants

to detect whether it is abnormal, it asks for help from all the

other parties, which would generate the instance’ binary strings

respectively and send the results to the master. Then the master

merges all the strings into a single one and converts it to a leaf

node using the mechanism in the merging stage. An anomaly

score can further be computed similarly as demonstrated in

Section III-C. If a third party wants to know whether its

instances are outliers, it can send the instances to any of our

participating parties to finish the prediction.

V. EXPERIMENTAL EVALUATION

In this section, we conduct performance evaluation of our

approach and present the detailed experimental results.

A. Evaluation Methodology

We use 10 natural datasets widely used for evaluating

outlier detection algorithms, including two biggest data subsets

TABLE I: Datasets properties

Datasets n m Abnormal proportion

Http (KDDCUP99) 567497 3 0.4%

ForestCover 286048 10 0.9%

Smtp (KDDCUP99) 95156 3 0.03%

Shuttle 49097 9 7%

Mammography 11183 6 2%

Satellite 6435 36 32%

Pima 768 8 35%

Breastw 683 9 35%

Arrhythmia 452 274 15%

Ionosphere 351 32 36%

Fig. 5: Comparison of ROC-AUC and PR-AUC per dataset and algorithm

(Http and Smtp) of KDDCUP99 network intrusion data [20],

Arrhythmia, Breastw, ForestCover, Ionosphere, Pima, Satellite,

Shuttle [21] and Mammography [22]. Table I presents the

properties of all the above datasets, where n is the number

of instances, m is the number of attributes (dimensions), and

abnormal proportion is the ratio of abnormal instances. Similar

to [14], we find that setting ψ to 256 generally provides enough

details to detect outliers over a wide range of data, and path

lengths usually converge well before t = 100. So we set

ψ = 256, t = 100 as default in our experiments. To intuitively

show the results, we simply divide the whole workflow of PIF

into two phases: train (to obtain the PIF) and test (to detect

outliers). Every party is simulated on a workstation with a

3.20GHz Intel Core i7-8700 CPU and 16GB RAM.

ROC-AUC and PR-AUC. Receiver Operating Charac-

teristic (abbreviated as ROC) curves and Precision-Recall

(abbreviated as PR) curves are two evaluation tools that

help in the interpretation of probabilistic forecasts for binary

(two-class) classification predictive modeling problems. ROC

curves are appropriate when the observations are balanced

between each class, whereas PR curves are appropriate for

imbalanced datasets [23]. The Area Under Curve (AUC) is

used to clearly describe the correctness of a model. The closer

AUC approaches 1, the more accurate the model is, and the

closer AUC approaches 0.5, the more inclined the model is

to random classification. We will combine the ROC-AUC and

PR-AUC metrics to evaluate our solutions.

B. Correctness and Effectiveness of PIF

We first verify the correctness and effectiveness of PIF. In

order to control variables, we do not consider the communi-

cation and encryption/decryption overhead here. We compare

our solutions for horizontally partitioned data (abbreviated

as H-Solution) and vertically partitioned data (abbreviated as

V-Solution), with iForest [14], and LOF [7] (a well-known

density-based algorithm) in terms of ROC-AUC, PR-AUC, and

actual CPU time (runtime).

The detailed experimental results are shown in Fig 5. We

observe that the ROC-AUC and PR-AUC of our solutions are

almost the same as that of iForest, which also demonstrates

the correctness of our model. Our solutions and iForest have

better results than LOF on almost all datasets. In addition,

our solutions are not affected no matter whether the data is

balanced or not.

The detailed experimental results on effectiveness are shown

in Table II. The runtime of our solutions and iForest is much

better than LOF. We use ‘NA’ to denote time-consuming

records. In the train phase, the time complexity of iForest

and H-Solution is O(tψ logψ), and the time complexity of

V-Solution is O(tψ2). Since we set ψ = 256, t = 100,

the runtime of all the datasets are basically the same for

each method. H-Solution needs to merge PISTs into PIF, and

each party in V-Solution needs to judge redundant nodes.

So the runtime of our solutions is slightly higher than that

of iForest. In the test phase, the time complexity of iForest

and H-Solution is O(nt logψ), and the time complexity of V-

Solution is O(ntψ). So we can find that the runtime of these

methods is linearly related to the dataset size, and V-Solution’s

runtime is larger than the other two. Note that the runtime of

the Arrhythmia dataset in the train phase is longer because it

contains more attributes, which requires more time to process

during preparation.

In general, the performance of our PIF almost has no

difference from iForest in terms of ROC-AUC and PR-AUC,

and both of them are superior to LOF. In terms of runtime,

no matter how the dataset size expands, the ROC-AUC and

PR-AUC always converge when ψ = 256 and t = 100. So

our method and iForest both have a linear time complexity.

To summarize, PIF is very efficient for outlier detection,

especially on large datasets.

C. Performance in Distributed Environments

Now we have learned the AUC and runtime of PIF in

centralized environments. Then, to test the performance in

distributed environments, we design the following experiment.

We simulate 3 parties in the LAN to analyze the runtime of our

H-Solution and V-Solution. The data transmissions between

parties follow the HTTP protocol. We first evaluate the runtime

Fig. 6: Time vs. number of instances

on each dataset, and then test the total time with regard to

various quantities of instances.

The comparison of runtime is shown in Table III. From the

table, we observe that:

• In the train phase, for each solution, the time spent on

different datasets is almost the same, because t and ψ are

fixed. The runtime in distributed environments is higher than

that in centralized scenarios, since more communication

overhead among parties is introduced. H-Solution needs to

transmit the leaf values of PISTs, V-Solution needs to send

all data on relevant nodes, which results in a little more

time consumption than the above centralized scenario.

• In the test phase, for horizontally partitioned data, parties

can independently perform outlier detection offline, so the

runtime is the same as the above centralized scenario. But

for vertically partitioned data, a party still needs help from

all other parties to complete the detection, so the amount of

communication is larger, which means more time is needed.

In order to figure out the impact of the number of instances

on the total running time, we extract different numbers of

instances from the Http (KDDCUP99) dataset for testing. The

results are shown in Fig. 6. We find that although the total time

of the two solutions are different, it changes linearly when

the number of instances grows, which is beneficial for outlier

detection in the large-scale distributed dataset.

D. Influence from Quantity of Parties

When detecting outliers in a distributed environment, an

increase in the number of parties often cause higher time

consumption and even reduce the detection accuracy. To study

(a) ROC-AUC of H-Solution (b) ROC-AUC of V-Solution

(c) PR-AUC of H-Solution (d) PR-AUC of V-Solution

Fig. 7: AUC vs. number of parties

the impact of the number of parties, we design the following

experiments.

For horizontally partitioned data, we change the number of

parties from 3 to 20, while for vertically partitioned data, we

set the maximum number of parties to 8 due to the limitation

of attributes. Corresponding AUCs are reported. In order

to clearly show the results, we select several datasets with

different AUCs. As shown in Fig. 7, we find that both ROC-

AUC and PR-AUC of each dataset are nearly the same across

different scenarios, even if the number of parties increases.

Then we compute the communication times and traffic

for our solutions, as presented in Table IV, where k is the

number of parties and n is the number of instances. The

communication times here refer to the actual data transmission

times. We find that communication times are linearly related

to the number of parties. The traffic here refers to the size

of the valid data transmitted. We find that the traffic of the

three solutions during the train phase is only related to the

number of parties, and the traffic of V-Solution is the biggest.

There is no communication in the test phase of H-Solution.

V-solution’s traffic at the test phase grows linearly with both

TABLE II: Comparison of runtime per dataset and algorithm

H-Solution V-Solution iForest
LOF

Train Test Total Train Test Total Train Test Total

Http (KDDCUP99) 0.014 7.189 7.203 0.034 69.486 69.520 0.008 7.495 7.503 NA

ForestCover 0.014 3.761 3.774 0.034 34.474 34.508 0.009 3.774 3.782 NA

Smtp (KDDCUP99) 0.012 1.266 1.278 0.034 12.995 13.029 0.007 1.320 1.327 NA

Shuttle 0.014 0.695 0.709 0.036 7.133 7.169 0.007 0.709 0.715 1261.943

Mammography 0.013 0.145 0.158 0.034 1.487 1.521 0.006 0.150 0.156 64.938

Satellite 0.021 0.091 0.112 0.032 0.909 0.941 0.007 0.090 0.097 23.231

Pima 0.013 0.012 0.025 0.030 0.102 0.133 0.006 0.011 0.017 0.231

Breastw 0.014 0.009 0.023 0.029 0.096 0.125 0.006 0.009 0.015 0.240

Arrhythmia 0.078 0.006 0.084 0.030 0.062 0.092 0.006 0.006 0.012 0.475

Ionosphere 0.018 0.005 0.024 0.035 0.049 0.084 0.007 0.005 0.012 0.07

(a) H-Solution (b) V-Solution

Fig. 8: Runtime vs. number of parties

the number of parties and the number of instances.

Finally, we test the total time consumed for each dataset

under different numbers of parties. As plotted in Fig. 8, we

observe that the total time of H-Solution and V-Solution keep

a linear relationship with the number of parties. Besides,

when the dataset size becomes larger, the growing speed of

V-Solution also increases. This is because most of the time

consumed in V-Solution comes from the test phase, which is

also directly related to the dataset size.

Overall, our proposed method has almost the same AUC

with iForest on each dataset in a centralized environment and

performs well for distributed scenarios, where iForest fails to

work. Both the ROC-AUC and PR-AUC of PIF are nearly

unaffected by the quantity of participating parties, no matter

whether the data is balanced or not. And the total runtime is

linearly related to both the data size and the number of parties.

Generally speaking, all the above evaluations demonstrate

that PIF can detect outliers effectively with high accuracy in

distributed environments.

VI. RELATED WORK

Outlier detection has been well studied in recent years.

According to the scenarios targeted, we classify state-of-the-

art approaches into the following two main categories.

Detection for centralized data. Existing methods mainly in-

clude the following three kinds. 1) Distance-based algorithms.

TABLE III: Comparison of runtime in 3-party scenario

H-Solution V-Solution

Train Test Total Train Test Total

Http (KDDCUP99) 0.152 7.241 7.393 4.106 305.431 309.538

ForestCover 0.155 3.923 4.077 4.119 147.889 152.008

Smtp (KDDCUP99) 0.151 1.409 1.560 4.113 52.547 56.659

Shuttle 0.154 0.861 1.015 4.094 26.756 30.851

Mammography 0.151 0.338 0.488 4.094 5.990 10.084

Satellite 0.159 0.288 0.447 4.125 3.485 7.610

Pima 0.150 0.212 0.362 4.119 0.414 4.533

Breastw 0.151 0.209 0.359 4.122 0.371 4.492

Arrhythmia 0.219 0.213 0.432 4.093 0.255 4.348

Ionosphere 0.156 0.204 0.360 4.081 0.198 4.279

TABLE IV: Comparison of communication traffic

Communication times Traffic (KiB)

H-Solution V-Solution H-Solution V-Solution

Train 6k − 4 4k − 4 274.04k − 249.03 871.69k − 871.69
Test 0 2k − 2 0 3.11(k − 1)n

Eskin et al. compute the anomaly score of an instance by

calculating the sum of its distances of its k nearest neighbors

[24]. The work in [5] computes the anomaly score of an

instance by counting the number of neighbors with a distance

no more than d. This algorithm can also be viewed as a

density-based algorithm. 2) Density-based algorithms. LOF

[7] defines the anomaly score as the ratio of the average

local density of the k nearest neighbors of an instance and

the local density of this instance. To improve the efficiency

of LOF, Jin et al. present a variant in finding anomaly score

only for the top n anomalies rather than all instances [25]. 3)

Cluster-based algorithms. such algorithms declare any instance

that does not belong to any cluster as an outlier. Well-known

algorithms include DBSCAN [26], ROCK [27], and SNN [28].

The algorithms above are typically designed for a centralized

system. With the expansion of the amount of data, big data

distributed storage is becoming more and more common, and

data privacy is a very sensitive topic.

Detection for distributed data. A lot of studies on privacy-

preserving outlier detection over distributed datasets have

emerged. The authors in [29] propose a privacy-preserving

nearest neighbor search method on horizontal data, which can

be applied to LOF, but it performs slightly worse than the

original LOF. Some researchers have proposed modifications

of standard distributed data mining framework, so that parties

only exchange locally trained models, i.e., association rules

[30], clustering [31] [32], principal component analysis [33],

neural networks [34], etc. However, these algorithms are not

efficient, and it is difficult to apply them in practice.

Zhang et al. propose a distributed outlier detection algorithm

based on ensemble isolation principle (Secure Isolation Forest)

and homomorphic encryption for horizontally partitioned data

[16]. However, the samples in this algorithm are not obtained

by random sampling, which does not conform to the principle

of Isolation Forest. The authors in [35] propose an outlier

detection algorithm based on Local Distance-based Outlier

Factor (LDOF) and use MPC to protect privacy. Although this

method has high efficiency with low communication cost, it

can only apply to two-party computation situations.

VII. CONCLUSION

This work presents a privacy-preserving outlier detection

method, which is applicable to distributed datasets with high

efficiency and accuracy. PIF innovatively extends traditional

iForest algorithm in distributed environments. With a series

of solutions devised for both horizontally and vertically par-

titioned data models, PIF is capable of securely detecting

outliers among multiple parties with as little computation

and communication overhead as possible. Experimental results

demonstrate the practicality and effectiveness of our design.

ACKNOWLEDGMENT

This research is supported in part by the National Key

R&D Program of China (Grant No. 2018YFB1308601), and

the National Natural Science Foundation of China (Grant No.

61902212).

REFERENCES

[1] V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artificial Intelligence Review, vol. 22, no. 2, pp. 85–126, 2004.

[2] H. Wang, M. J. Bah, and M. Hammad, “Progress in outlier detection
techniques: A survey,” IEEE Access, vol. 7, pp. 107 964–108 000, 2019.

[3] K. Alrawashdeh and C. Purdy, “Toward an online anomaly intrusion
detection system based on deep learning,” in Proceedings of the

IEEE International Conference on Machine Learning and Applications

(ICMLA). IEEE, 2016, pp. 195–200.

[4] G. B. Gebremeskel, C. Yi, Z. He, and D. Haile, “Combined data mining
techniques based patient data outlier detection for healthcare safety,”
International Journal of Intelligent Computing and Cybernetics, vol. 9,
no. 1, pp. 42–68, 2016.

[5] E. M. Knorr and R. T. Ng, “Algorithms for mining distance-based
outliers in large datasets,” in Proceedings of the International Conference

on Very Large Data Bases (VLDB). Citeseer, 1998, pp. 392–403.

[6] M. Sugiyama and K. Borgwardt, “Rapid distance-based outlier detection
via sampling,” vol. 26, pp. 467–475, 2013.

[7] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in Proceedings of the ACM SIGMOD

International Conference on Management of Data. ACM, 2000, pp.
93–104.

[8] L. Duan, L. Xu, F. Guo, J. Lee, and B. Yan, “A local-density based
spatial clustering algorithm with noise,” Information Systems, vol. 32,
no. 7, pp. 978–986, 2007.

[9] J. Gao, W. Hu, Z. M. Zhang, X. Zhang, and O. Wu, “Rkof: robust
kernel-based local outlier detection,” in Proceedings of the Pacific-Asia

Conference on Knowledge Discovery and Data Mining. Springer, 2011,
pp. 270–283.

[10] B. Tang and H. He, “A local density-based approach for outlier detec-
tion,” Neurocomputing, vol. 241, pp. 171–180, 2017.

[11] C. Zhang, A. Yin, Y. Deng, P. Tian, X. Wang, and L. Dong, “A novel
anomaly detection algorithm based on trident tree,” in Proceedings of

the International Conference on Cloud Computing. Springer, 2018, pp.
295–306.

[12] Z. Chen, A. W.-C. Fu, and J. Tang, “On complementarity of cluster
and outlier detection schemes,” in Proceedings of the International

Conference on Data Warehousing and Knowledge Discovery. Springer,
2003, pp. 234–243.

[13] Z. He, X. Xu, and S. Deng, “Discovering cluster-based local outliers,”
Pattern Recognition Letters, vol. 24, no. 9-10, pp. 1641–1650, 2003.

[14] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proceedings

of the IEEE International Conference on Data Mining (ICDM). IEEE,
2008, pp. 413–422.

[15] J. Vaidya and C. Clifton, “Privacy-preserving outlier detection,” in
Proceedings of the IEEE International Conference on Data Mining

(ICDM). IEEE, 2004, pp. 233–240.

[16] C. Zhang, H. Liu, Y. Li, A. Yin, Z. L. Jiang, Q. Liao, and X. Wang,
“A novel privacy-preserving distributed anomaly detection method,”
in Proceedings of the International Conference on Security, Pattern

Analysis, and Cybernetics (SPAC). IEEE, 2017, pp. 463–468.

[17] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu, “Tools for
privacy preserving distributed data mining,” ACM SIGKDD Explorations

Newsletter, vol. 4, no. 2, pp. 28–34, 2002.

[18] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proceedings of the USENIX Annual Technical Conference,
2014, pp. 305–319.

[19] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on

Mathematical Software (TOMS), vol. 11, no. 1, pp. 37–57, 1985.

[20] K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne, “On-line
unsupervised outlier detection using finite mixtures with discounting
learning algorithms,” Data Mining and Knowledge Discovery, vol. 8,
no. 3, pp. 275–300, 2004.

[21] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.

[22] K. S. Woods, C. C. Doss, K. W. Bowyer, J. L. Solka, C. E. Priebe,
and W. P. Kegelmeyer Jr, “Comparative evaluation of pattern recogni-
tion techniques for detection of microcalcifications in mammography,”
International Journal of Pattern Recognition and Artificial Intelligence,
vol. 7, no. 6, pp. 1417–1436, 1993.

[23] J. Brownlee, Probability for Machine Learning: Discover How To

Harness Uncertainty With Python. Machine Learning Mastery, 2019.

[24] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A geometric
framework for unsupervised anomaly detection,” in Applications of Data

Mining in Computer Security. Springer, 2002, pp. 77–101.
[25] W. Jin, A. K. Tung, and J. Han, “Mining top-n local outliers in

large databases,” in Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 2001,
pp. 293–298.

[26] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the International Conference on Knowledge Discovery

and Data Mining, 1996, pp. 226–231.
[27] S. Guha, R. Rastogi, and K. Shim, “Rock: A robust clustering algorithm

for categorical attributes,” Information Systems, vol. 25, no. 5, pp. 345–
366, 2000.

[28] L. Ertöz, M. Steinbach, and V. Kumar, “Finding topics in collections
of documents: A shared nearest neighbor approach,” in Clustering and

Information Retrieval. Springer, 2004, pp. 83–103.
[29] M. Shaneck, Y. Kim, and V. Kumar, “Privacy preserving nearest neigh-

bor search,” in Machine Learning in Cyber Trust. Springer, 2009, pp.
247–276.

[30] G. Deshmeh and M. Rahmati, “Distributed anomaly detection, using
cooperative learners and association rule analysis,” Intelligent Data

Analysis, vol. 12, no. 4, pp. 339–357, 2008.
[31] S. Rajasegarar, C. Leckie, M. Palaniswami, and J. C. Bezdek, “Dis-

tributed anomaly detection in wireless sensor networks,” in Proceedings

of the IEEE Singapore International Conference on Communication

Systems. IEEE, 2006, pp. 1–5.
[32] Y.-F. Zhang, Z.-Y. Xiong, and X.-Q. Wang, “Distributed intrusion

detection based on clustering,” in Proceedings of the International

Conference on Machine Learning and Cybernetics, vol. 4. IEEE, 2005,
pp. 2379–2383.

[33] V. Chatzigiannakis, S. Papavassiliou, M. Grammatikou, and B. Maglaris,
“Hierarchical anomaly detection in distributed large-scale sensor net-
works,” in Proceedings of the IEEE Symposium on Computers and

Communications (ISCC). IEEE, 2006, pp. 761–767.
[34] N. Srinivasan and V. Vaidehi, “Anomaly detection in a distributed

environment using neural networks on a cluster,” in Proceedings of

the IASTED International Conference on Communication, Network, and

Information Security (CNIS), 2005.
[35] Z. Wei, Q. Pei, X. Liu, and L. Ma, “Efficient privacy preserving

cross-datasets collaborative outlier detection,” in Proceedings of the

International Symposium on Cyberspace Safety and Security. Springer,
2019, pp. 343–356.

