
Analog On-Tag Hashing: Towards Selective Reading as Hash
Primitives in Gen2 RFID Systems

Lei Yang
∗
, Qiongzheng Lin

∗
, Chunhui Duan

∗†
, Zhenlin An

∗

∗
Department of Computing, The Hong Kong Polytechnic University

†
School of Software, Tsinghua University

{young,lin,hui,an}@tagsys.org

ABSTRACT
Deployment of billions of Commercial o�-the-shelf (COTS) RFID

tags has drawn much of the attention of the research community

because of the performance gaps of current systems. In particular,

hash-enabled protocol (HEP) is one of the most thoroughly studied

topics in the past decade. HEPs are designed for a wide spectrum of

notable applications (e.g., missing detection) without need to collect

all tags. HEPs assume that each tag contains a hash function, such
that a tag can select a random but predicable time slot to reply with a

one-bit presence signal that shows its existence. However, the hash
function has never been implemented in COTS tags in reality, which

makes HEPs a 10-year untouchable mirage. This work designs and

implements a group of analog on-tag hash primitives (called Tash)
for COTS Gen2-compatible RFID systems, which moves prior HEPs

forward from theory to practice. In particular, we design three

types of hash primitives, namely, tash function, tash table function
and tash operator. All of these hash primitives are implemented

through selective reading, which is a fundamental and mandatory

functionality speci�ed in Gen2 protocol, without any hardware

modi�cation and fabrication. We further apply our hash primitives

in two typical HEP applications (i.e., cardinality estimation and

missing detection) to show the feasibility and e�ectiveness of Tash.

Results from our prototype, which is composed of one ImpinJ reader

and 3, 000 Alien tags, demonstrate that the new design lowers 60%

of the communication overhead in the air. The tash operator can

additionally introduce an overhead drop of 29.7%.

CCS CONCEPTS
•Networks→Cyber-physical networks; •Computer systems
organization→ Embedded and cyber-physical systems;

KEYWORDS
RFID; Hash Function; Hash Table Function; EPCGlobal Gen2

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

MobiCom ’17, October 16–20, 2017, Snowbird, UT, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4916-1/17/10. . . $15.00

https://doi.org/10.1145/3117811.3117835

1 INTRODUCTION
RFID systems are increasingly used in everyday scenarios, which

range from object tracking, indoor localization [60], vibration sens-

ing [61], to medical-patient management, because of the extremely

low cost of commercial RFID tags (e.g., as low as 5 cents per tag).

Recent reports show that many industries like healthcare and retail-

ing are moving towards deploying RFID systems for object tracking,

asset monitoring, and emerging Internet of Things [12].

1.1 The State-of-the-Art
The Electronic Product Code global is an organization established

to accomplish the worldwide adoption and standardization of EPC

technology. It published the Gen2 air protocol [1] for RFID system

in 2004. A Gen2 RFID system consists of a reader and many passive

tags. The passive tags without batteries are powered up purely by

harvesting radio signals from readers. This protocol has become

the mainstream speci�cation globally, and has been adopted as a

major part of the ISO/IEC 18000-6 standard.

Embedding Gen2 tags into everyday objects to construct ubiqui-

tous networks has been a long-standing vision. However, a major

problem that challenges this vision is that the Gen2 RFID system

is not e�cient [55]. First, the RFID system utilizes simple modula-

tions (e.g., ON-OFF keying or BPSK) due to the lack of traditional

transceiver [9], which prevents tags from leveraging a suitable chan-

nel to transmit more bits per symbol and increase the bandwidth

e�ciency. Second, tags cannot hear the transmissions of other tags.

They merely reply on the reader to schedule their medium access

with the Framed Slotted ALOHA protocol, which results in many

empty and collided slots. This condition also retards the inventory

process. These two limitations force a reader to go through a long

inventory phase when it collects all the tags in the scene.

1.2 Ten-Year Mirage of HEP
Motivated by the aforementioned performance gaps, the research

community opened a new focus on HEP design approximately 10

years ago. The key idea that underlies HEPs is that each tag selects

a time slot according to the hash value of its EPC and a random

seed. It then replies a one-bit presence signal rather than the entire

EPC number in the selected slot. HEPs treat all tags as if they were

a virtual sender, which outputs a gimped hash table (i.e., a presence
bitmap) when responding to a challenge (i.e., a random seed). Most

importantly, HEPs assume the backend server and every tag share

a hash function, and the resulting bitmap is random but predicable

when the EPCs and seeds are known.

https://doi.org/10.1145/3117811.3117835


0 1 1 0 1 1 1 0

1101102

1010102

1001102

1101102 1010012

1110012

1010112

Reader

1011012

Upper 
Application

r

r EPCs

Tag

closed 
system

B

B = [0, 1, 1, 0, 1, 1, 1, 0]

hd(1101102, r) = 2

d

Fig. 1: Hash enabled protocol illustration. In the �gure, 8 tags

emit one-bit signals in the hd (EPC, r )
th

time slots respectively,

which are challenged by the random seed r and the frame length d .
Finally, the reader abstracts tags’ responses as a presence bitmap.

Fig. 1 shows a toy example with n = 8 tags, each of which

contains a unique EPC number presented in binary format (e.g.,

1010102), to illustrate the HEP concept. The reader divides the time

into d time slots (e.g., d = 8.) and challenges these tags with the

random seed r . Each tag selects the (hd (EPC, r ))
th

time slot to

reply the one-bit signal, where h(·) is a common hash function

(e.g., MD5, SHA-1) and hd (·) = h(·) mod d . The reader can recog-

nize two possible results for each time slot, namely, empty and

non-empty1. The reader abstracts the reply results into a bitmap

(i.e., B = [0, 1, 1, 0, 1, 1, 1, 0]), where each element contains two

possible values, that is, 0 and 1, that corresponds to empty and

non-empty slots, respectively. The upper layer then utilizes this

returned bitmap to explore many notable applications. We show

the following two typical applications as examples to drive the key

point:

• Cardinality estimation. Estimating the size of a given tag pop-

ulation is required in many applications, such as privacy sensi-

tive systems and warehouse monitoring. Kodialam et al. [18] pre-

sented a pioneer estimator. Given that tags select the time slots

uniformly because of hashing, the expected number of ‘0’s equals

n0 = d (1−1/d )
n ≈ de−n/d . Countingn0 in an instance yields a “zero

estimator”, i.e., n̂ ≈ −d ln(n0/d ). For example, n̂ = −8×ln(3/8) = 7.8

in our toy example.

• Missing detection. Consider a major warehouse that stores

thousands of apparel, shoes, pallets, and cases. How can a sta�

immediately determine if anything is missing? Sheng and Li [53]

conducted the early study on the fast detection of missing-tag

events by using the presence bitmap. They assumed all EPCs were
known in a closed system. Given that hash results are predicable,

the system can generate an intact bitmap at the backend. We can

identify the missing tags in a probabilistic approach by comparing

the intact and instanced bitmaps. For example, if the second entry

equals 0 (which is supposed to be 1), the the tag 1010102 must be

missing in our toy example.

HEPs are advantageous in terms of speed and privacy. HEPs are

faster than all prior per-tag reading schemes for two reasons. First,

collecting all the EPCs of the tags is time consuming because of

the aforementioned low-rate modulation, whereas one-bit presence

signals of HEPs save approximately 96× of the time (i.e., the EPC

1
Some work assume the reader can recognize the signal collision, obtaining three

results: empty, single and collision.

length equals 96 bits in theory
2
). Second, collisions are consid-

ered as one of the major reasons that drag down the reading. On

the contrary, HEPs tolerate and consider collisions as informative.

When privacy issues are considered, the tag’s identi�cation may

be unacceptable in certain instances. HEPs allow tags to send out

non-identi�able information (i.e., one-bit signals).

HEPs are very promising. However, after 10 years of enthusiastic

discussion about the opportunities that HEPs provide, the reality is

beginning to settle: the functionality of hashing (i.e., hash function

and hash table function) has never been implemented in any Gen2

RFID tags and considered by any RFID standard. No hint shows

that this function will be widely accepted in the near future.

1.3 Why Not Support Hashing?
A large number of recent work have attempted to supplement hash

functionality to RFID tags, which can be categorized into three

groups. First group, like [11, 39], modi�es the common hash func-

tions to accommodate resource-constrained RFID tags. The second

group [5, 5, 14, 16, 24, 39, 44, 63, 66] designs new lightweight and

e�cient hash functions dedicatedly for RFID tags. The third group

seeks new design of RFID tags like WISP[38] and Moo [67], which

gives tags more powerful computing capabilities (e.g., hashing [37]).

Unfortunately, as far as we know, none of these work has been really

applied in COTS RFID systems yet.

Why is the hash function unfavored? A term called as Gate
Equivalent (GE) is widely used to evaluate a hardware design with

respect to its e�ciency and availability. One GE is esquivalient to

the area which is required by the two-input NAND gate with the

lowest deriving strength of the corresponding technology. A glance

at Table. 1 shows the available designs of hash functions for RFID

tags require a signi�cant number of GEs, which are completely

una�ordable by current COTS tags. For example, the most com-

pact hash functions requires thousands of GEs (e.g., 1, 075 GEs for

PRESENT-80), which incur extremely high energy consumption

and manufacture cost. Thus, relatively few RFID-oriented protocols

that appeal to a hash function can be utilized. RFID was expected

to be one of the most competitive automatic identi�cation tech-

nologies due to its many attractive advantages (e.g., simultaneous

reading, NLOS, etc.) compared with others (e.g., barcode). How-

ever, this progress has been hindered for many years by the �nal

obstacle that the industry is attempting to overcome (i.e., the price).

The industry is extremely sensitive to the cost being doubled or

tripled by the hash, although HEPs actually introduce signi�cant

outperformance.

1.4 Our Contributions
This work designs a group of hash primitives, Tash, which takes

advantage of existing fundamental function of selective reading
speci�ed in Gen2 protocol, without any hardware modi�cation and

fabrication. Our design and implementation both strictly follow

the Gen2 speci�cation, so it can work in any Gen2-Compatible

RFID system. These mimic (or analog) hash primitives act as we

embedded real hash circuits on tags
3
, while we actually implement

2
Actual case in practice would be less than this estimate due to other extra jobs, such

as setup time, query time, etc.

3
This work does not target at designing any analog circuit on readers or tags, but

o�ers a mimic hash function acting as we embed a hash circuit on each tag.

2



them in application layer. Speci�cally, we design the following three

kinds of hash primitives to revive prior HEPs:

•We design a hash function (aka tash function) over existing

COTS Gen2 tags. The hash function outputs a hash value associated

with the EPC of the tag and a random seed, as HEPs require.

•We design a hash table function (aka tash table function) over

all tags in the scene. It can produce a hash table (aka tash table),

which is more informative than a bitmap, over the all tags in the

scene. In particular, each entry indicates the exact number of tags

hashed into this entry.

•Major prior HEPs require multiple acquisitions of bitmaps to

meet an acceptable con�dence. We design three tash operators (i.e.,

tash AND, OR and XOR) to perform entry-wise set operations over

multiple tash tables on tag in the physical layer, which o�ers a

one-stop acquisition solution.

Summary. It has been considered that HEPs are hardly applied

in practice because of the ‘impossible mission’ of implementing

hash function on COTS Gen2 tags [6]. In this work, our main con-

tribution lies in the practicality and usability, that is, enabling bil-

lions of deployed tags to bene�t performance boost from prior

well-studied HEPs, with our hash primitives. To the best of our

knowledge, this is the �rst work to implement the hash functional-

ity over COTS Gen2 tags. Second, we provide an implementation

of Tash and show its feasibility and e�ciency in two typical us-

age scenarios. Third, we investigate several leading RFID products

in market including 18 types of tags and 10 types of readers, in

terms of their compatibility with Gen2, and conduct an extensive

evaluation on our prototype with COTS devices.

2 RELATEDWORK
We review the related work from two aspects: the designs of hash

functions and hash enabled protocols.

Design of hash function. Feldhofer and Rechberger [11] �rstly
point that current common hash functions (e.g., MD5, SHA-1, etc.),
are not hardware friendly and unsuitable at all for RFID tags, which

have very constrained computing ability. Such di�culty has spurred

considerable research [5, 5, 11, 14, 16, 24, 39, 39, 44, 63, 66]. We

sketch the primary designs and their features in Table. 1. For exam-

ple, Bogdanov et al. [5] propose a hardware-optimized block cipher,

PRESENT, designed with area and power constraints. The follow-

up work [44] presents three di�erent architectures of PRESENT

and highlights their availability for both active and passive smart

devices. Their implementations reduce the number of GEs to 1, 000

around. Lim and Korkishko [24] present a 64-bit hash function with

three key size options (64 bits, 96 bits and 128 bits), which requires

about 3, 500 and 4, 100 GEs. In summary, despite these optimized

designs, majority are still presented in theory and none of them are

available for the COTS RFID tags. On contrary, our work explores

hash function from another di�erent aspect, that is, leveraging

selective reading to mimic equivalent hash primitives.

Design of hash enabled protocol. To drive our key point, we

conduct a brief survey of previous related works. We list several

key usage scenarios that we would like to support. Our objective is

not to complete the list, but to motivate our design. (1) Cardinality
estimation. Dozens of estimators [8, 13, 17, 19, 28, 29, 40, 41, 45,

47, 51, 52, 56, 71, 72] have been proposed in the past decade. For

Table 1: Performance overview of current hash functions 4

Hash functions Key size GE Power Clock cycles
SHA-256[11] 256 10,868 15.87µA 1,128

SHA-1 [11] 160 8,120 10.68µA 1,274

AES [10] 128 3,400 8.15µA 1,032

MAME[63] 256 8,100 5.16µA 96

MD5 [11] 128 8,400 - 612

MD4 [11] 128 7,350 - 456

PRESENT-80 [5] 80 1,570 - 32

PRESENT-80 [44] 80 1,075 - 563

PRESENT-128 [6] 128 1,886 - 32

DES [39] 56 2,309 - 144

mCrypton [24] 96 2,608 - 13

TEA [66] 128 2,355 - 64

HIGHT [16] 128 3,048 - 34

DESXL [39] 184 2,168 - 144

Grain & Trivium[14] 80 2,599 - 1

example, Qian et al. [41] proposed an estimation scheme called

lottery frame. Shahzad and Liu [47] estimated the number based on

the average run-length of ones in a bit string received using the FSA.

In particular, they claimed that their protocol is compatible with

Gen2 systems. However, their scheme still requires modifying the

communication protocol, and thus, it fails to work with COTS Gen2

systems. By contrast, our prototype can operate in COTS Gen2

systems as demonstrated in this study. (2) Missing detection. The
missing detection problemwas �rstly mentioned in [53]. Thereafter,

many follow-up works [21, 22, 27, 31–33, 36, 48, 49, 54, 59, 64, 65, 68,

73] have started to study the issue of false positives resulting from

the collided slots by using multiple bitmaps. (3) Continuous reading.
The traditional inventory approach starts from the beginning each

time it interrogates all the tags, thereby making it highly time-

ine�cient. These works [25, 50, 58] have proposed continuous

reading protocols that can incrementally collect tags in each step

using the bitmap. For example, Sheng et al. [50] aimed to preserve

the tags collected in the previous round and collect only unknown

tags. Xie et al. [58] conducted an experimental study on mobile

reader scanning. Liu et al. [25] initially estimated the number of

overlapping tags in two adjacent inventories and then performed

an e�ective incremental inventory. (4) Data mining. These works
[26, 34, 35, 51, 57] discuss how to discover potential information

online through bitmaps. For example, Sheng et al. [51] proposed

to identify the popular RFID categories using the group testing

technique. Xie et al. found histograms over tags through a small

number of bitmaps[57]. Luo et al. [34, 35] determined whether the

number of objects in each group was above or below a threshold.

Liu et al. [26] proposed a new online classi�cation protocol for a

large number of groups. (5) Tag searching. These works[30, 70] have
studied the tag searching problem that aims to �nd wanted tags

from a large number of tags using bitmaps in a multiple-reader

environment. Zheng et al. [70] utilized bitmaps to aggregate a large

volume of RFID tag information and to search the tags quickly. Liu et

al. [30] �rst used the testing slot technique to obtain the local search

result by iteratively eliminating wanted tags that were absent from

the interrogation region. (6) Tag polling. [20, 42, 43] consider how
to quickly obtain the sensing information from sensor-augmented

tags. The system requires to assign a time slot to each tag using the

presence bitmap. In summary, all the aforementioned HEP designs

have allowed RFID research to develop considerably in the past

decade. All the work can be boosted by our hash primitives.

3



3 OVERVIEW
Tash provides a group of hash primitives for HEPs. This section

presents the scope and formally de�nes our hash primitives.

3.1 Scope
Despite clear and certain speci�cations, the implementation of the

Gen2 protocol still varies with readers and manufacturers because

of �rmware bugs or compromises, especially in early released reader

devices, according to our compatibility report presented in §7. Here,

we �rmly claim that our design and implementation strictly follow

the speci�cations of the Gen2 and LLRP protocols (refer to §6). The

framework works with any Gen2-compatible readers and tags. The

performance losses caused by defects in devices are outside the

scope of our discussion.

3.2 De�nitions of Hash Primitives
Before delving into details, we formally de�ne the hash primitives

that the HEPs require, from a high-level.

Definition 1 (Tash function). An l-bit tash function is actually
a hash function fl (t , r ) : T ×R → 2

l , whereT andR are the domains
of EPCs of the tags and random seeds.

Tash function and tash value. As the above de�nition speci-

�es, an l-bit tash function takes an EPC t and a random seed r as
input and outputs an l-bit integer i , denoted by:

i = fl (t , r ) (1)

We call l the dimension of tash function (i.e., l = 0, 1, 2, . . . ). The

tash value i is an integer ∈ [0, 2l −1]. Similar to other common hash

function, the tash function has three basic characteristics. First, the

output changes signi�cantly when the two parameters are altered.

Second, its output is uniformly distributed within the given range,

and predicable if all inputs are known. Third, the hash values are

accessible.

Definition 2 (Tash table function). An l-bit tash table func-
tion can assign each tag t from a given set into the ith entry of a hash
table (aka tash table) with a random seed r , where i = fl (t , r ). Each
entry of the tash table is the number of tags tashed into it.

Tash table function and tash table. Let B and Fl denote a

tash table and a tash table function respectively. The tash table

function takes a set of tags (i.e., T = {t1, t2, . . . , tn }) and a random

number r as input and outputs a tash table B, denote by:

B = Fl (T , r ) (2)

where B[i] = |{t | fl (t , r ) = i}| (i.e., the number of tags tashed into

the ith entry) for ∀t ∈ T . Let L = 2
l
, which is de�ned as the size

of the tash table. The tash table function is the core function that

HEPs expect. HEPs consider the reader as well as all tags as a black

box equipping with tash table function. When inputing a random

seed, the box would output a tash table. HEPs then utilize such table

to provide various services (e.g., missing detection or cardinality

estimation.). It worths noting that superior to the bitmap employed

in prior HEPs, our tash table is a perfect table that contains the

exact number of tags tashed into each entry. Clearly, the table is

completely backward compatible with prior HEPs because it can

be forcedly converted into a presence bitmap.

0
1
1
1
1
2
0
1

t3

t4

t5

t6

t7

t2

0
2
1
0
1
3
0
0

B1 = F3(T, r1) B2 = F3(T, r2)

B1 � B2 = [0, 1, 0, 0, 0, 2, 0, 0]

B1 || B2 = [0, 2, 2, 1, 1, 3, 0, 1]

B1 ⌦ B2 = [0, 1, 2, 1, 2, 1, 0, 1]

t1
B1 = [0, 2, 1, 0, 1, 3, 0, 0]

B2 = [0, 1, 1, 1, 1, 2, 0, 1]

Fig. 2: Illustration of tash operators. The left shows two inde-

pendent tash tables, while the right shows the results of the two

tash tables with tash AND, OR and XOR.

Tash operators. Most prior HEPs adopt probabilistic ways and

their results are guaranteed with a given con�dence level. To meet

the level, they usually combine multiple bitmaps, which are ac-

quired through multiple rounds and challenged by di�erent seeds.

We abstract such combination into three basic tash operators, namely,

tash AND, OR and XOR. These operators can comprise other com-

plex operations. Let B1 = Fl (T , r1) and B2 = Fl (T , r2) denote two
tash tables acquired twice with two di�erent seeds, r1 and r2.

Definition 3 (Tash AND). The tash AND (denoted by ⊕) of two
tash tables is to obtain the intersection of two corresponding entry sets.
Formally, B = B1 ⊕ B2, where B[i] = |{t | fl (t , r1) = i&fl (t , r2) = i}|.

The tash AND is aimed at obtaining the common intersection

of corresponding entries from two tash tables. For example, as

shown in Fig. 2, B1[1] and B2[1] count {t1, t2} and {t2} respectively.
However, (B1 ⊕ B2)[1] = |{t2}| = 1, which counts t2 only.

Definition 4 (Tash OR). The tash OR (denoted by | |) of two tash
tables is to merge two corresponding entry sets. Formally, B = B1 | |B2,
where B[i] = |{t | fl (t , r1) = i | | fl (t , r2) = i}|.

The tash OR is aimed at obtaining the total number of tags

mapped into the corresponding entries in two tash tables. Note tash

OR is not the same as the entry-wise sum, i.e., B1 | |B2 , B1 + B2
because the tags twice mapped into a same entry are counted only

once. As shown in Fig. 2, (B1 | |B2)[5] = |{t5, t6, t7}| = 3 although

B1[5] + B2[5] = 5 because t6 and t7 appear twice in the two tash

tables.

Definition 5 (Tash XOR). The tash XOR (denoted by ⊗) is to
remove the intersection of two corresponding entry sets from the �rst
entry set. Formally, B = B1 ⊗ B2 such that B[i] = |{t | fl (t , r1) =
i & fl (t , r2) , i}|.

The tash XOR is aimed at obtaining the total number of the

set di�erence. As Fig. 2 shows, B1[5] = |{t5, t6, t7}| and B2[5] =
|{t6, t7}|. Then (B1 ⊗ B2)[5] = |{t5}| = 1.

The above operators can be applied in a series of tash tables

with the same dimension for a hybrid operation, e.g., B1 ⊕ B2 | |B3.
Tash AND and OR satisfy operational laws such as associative law

and commutative law, e.g., B1 ⊕ B2 = B2 ⊕ B1. The design of tash

operators is one of the attractive features of the tash framework, and

it has never been proposed before. More importantly, we design

and implement these operators in the physical layer to provide

one-stop acquisition solution.

4



MemBank-1

Reader Tags

Select

1 0 1 1 0 1 1 0

1 1 1 1 0 1 0 0

0 0 1 1 1 1 0 0

0 1 1 1 0 1 1 0

0 0 1 1 0 1 1 0

0 1 1 1 0 1 0 0

1 0 1 1 0 1 1 0

Action = 0

MemBank = 1

Pointer = 1

Length = 2

Mask = 01

Select

Fig. 3: Illustration of selective reading in Gen2. There are total
7 tags covered by a reader. The reader initiates a selective reading

using a Select command, which let these tags (highlighted with

dark red) whose data starting at the �rst bit with a length of 2 bits in

the MemBank-1 equals 012, participate in the incoming inventory,

while other tags (with gray color) that do not meet the condition

remain silent.

3.3 Solution Sketch
Tash is designed to reduce the overhead for air communications. It

runs in the middle of the reader and upper application. The upper

application passes a pair of arguments (i.e., r and l ), or pairs of argu-
ments (as well as operators) to Tash. On the basis of the arguments,

Tash generates one or more con�guration �les to manipulate the

reader’s reading. Finally, Tash abstracts the reading results to a tash

table, which is returned to the upper application.

The rest of the paper is structured as follows. We �rstly present

the tash design in §4. We next demonstrate the usage of our hash

primitives in two classic applications in §5. We then introduce the

tash implementation using LLRP interfaces in §6. In §7 and §8, we

present the microbenchmark and the usage evaluation. Finally, we

conclude in §9 and present future directions.

4 TASH DESIGN
In this section, we introduce the background of Gen2 protocol, and

then present the technical details of our designs.

4.1 Background of Gen2 Protocol
The Gen2 standard de�nes air communication between readers and

tags. On the basis of [1, 69], we introduce its four central functions

we will employ:

F1: MemoryModel.Gen2 speci�es a simple tag memory model

(pages 44 ∼ 46 of [1]). Each tag contains four types of non-volatile

memory blocks (calledmemory banks): (1) MemBank-0 is reserved

for password associated with the tag. (2) MemBank-1 stores the

EPC number. (3) MemBank-2 stores the TID that speci�es the

unchangeable tag and vendor speci�c information. (4) MemBank-3
is a customized storage that contains user-de�ned data. We can use

Read or Write commands to read or write data into these banks.

F2: Selective Reading.Gen2 speci�es that each inventory must

be started with Select command (pages 72∼73 of [1]). The reader

can use this command to choose a subset of tags that will participate

in the upcoming inventory round. In particular, each tagmaintains a

�ag variable SL. The reader can use the Select command to turn

the SL �ags of tags into asserted (i.e., true) or deasserted
(i.e., false). The Select command comprises six mandatory �elds

and one optional �eld apart from the constant cmd code (i.e., 10102).

The following �elds are presented for this study.

• Target. This �eld allows a reader to change SL �ags or the

inventoried �ags of the tags. The inventoried �ags are used when

multiple readers are present. Such scenario is irrelevant to our

requirements. Thus, we aim to change SL �ags of tags.

• Action. This �eld speci�es an action that will be will per-

formed by the tags. Table. 2 lists eight action codes to which the

tag makes di�erent responses. For example, the matching or not-

matching tags assert or deassert their SL �ags when Action=0.
We leverage this useful feature to design tash operators.

• MemBank, Pointer, Length and Mask. These four �elds
are combined to compose a bitmask. The bitmask indicates which

tags are matched or not-matched for an Action. The Mask con-

tains a variable length binary string that should match the content

of a speci�c position in the memory of a tag. The Length �eld

de�nes the length of the Mask �eld in bits. The Mask �eld can be

compared with one of the four types of memory banks in a tag. The

MemBank �eld speci�es which memory bank the Mask will be

compared with. The Pointer �eld speci�es the starting position

in the memory bank where the Mask will be compared with. For

example, if we use a tuple (b,p, l ,m) to denote the four �elds, then

only the tags with data starting at the pth bit with a length of l bits

in the bth memory bank that is equal tom are matched.

To visually understand the selective reading, we show an exam-

ple in Fig. 3 in which 4 out of 7 tags are selected to participate in

the incoming inventory. Complex and multiple subsets of tags can

be facilitated by issuing a group of Select commands to choose

a subset of tags before an inventory round starts. For example, we

can issue two Select commands: one for division and another

for one-bit reply. Note the Truncate enabled Select command

must be the last one if multiple selection commands are issued [1].

F3: Truncated Reply. Gen2 allows tags to reply a truncated
reply (i.e., replying a part of EPC) through a special Select com-

mand with an enabled Truncate �eld, making a one-bit presence

signal possible. When Truncate is enabled (i.e., set to 1), then

the corresponding bitmask is not used for the division of tags, but

lets tags reply with a portion of their EPCs following the pattern
speci�ed by the bitmask. Note that when Truncate is enabled,

the MemBank must be set to the EPC bank (i.e., MemBank = 1)

and such Select command must be the last one.

F4: Query Model. Followed by a group of Select commands,

Query command (see page 76∼80 of [1].) starts a new inventory
round over a subset of tags, chosen by the previous Select com-

mands.

4.2 Design of the Tash Function
An l-bit tash function is essentially a hash function that is indis-

pensable to HEPs. We design the tash function while following the

three principles outlined as follows. The �rst principle requires that

Table 2: Actions in the Select command
Action code Tag matching Tag not-matching

0 assert SL deassert SL
1 assert SL do nothing

2 do nothing deassertSL
3 negate SL do nothing

4 deassert SL assert SL
5 deassert SL do nothing

6 do nothing assert SL
7 do nothing negate SL

5



Tash function

0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 h(t)

1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 tMemBank-1:

MemBank-3:
10102

1 0 1 0

l = 4

bitmaskr = 5

r = 5, l = 4

Fig. 4: Illustration of a tash function. The result of a tash func-

tion of f4 (t , 5) is equal to 10102.

the tash result must be dependent on the input EPC and the seed.

Moreover, it must be predictable as long as all the input parameters

are known. The second principle requires the output values to be

random, i.e., uniformly distributed in [0, 2l − 1]. Even a one bit

di�erence in the input will result in a completely di�erent outcome.

The third principle requires a method that can access the tash result

of a tag directly or indirectly.

We have constructed the tash function as follows by applying

the aforementioned principles: given a tag with an EPC of t , we
�rstly calculate the hash value of the EPC o�ine, using a common

perfect hash function like 128-bit MD5 or SHA-1. Let h(t ) denote
the calculated hash value. We then write h(t ) into the tag’s user-

de�ned memory bank of the tag, i.e., MemBank-3, for later use.

Definition 6 (Tash value). The l-bit tash value of tag t chal-
lenged by seed r is de�ned as the value of the sub-bitstring starting
from the r th bit and ending at the (r +l−1)th bit in the MemBank-3
of the tag.

Evidently, fl (t , r ) is actually a portion of h(t ), and thus, the

parameter r ∈ [0,L−1] and l ∈ [1,L−r ], where L is the length of

the hash value (e.g., 128 bits). Fig. 4 shows an example wherein the

MemBank-1 and MemBank-3 of the tag store its EPC t and the

hash value h(t ), respectively. When r = 5 and l = 4 are inputted,

the tash value that this tag outputs is 10102, which is the sub-

bitstring of h(t ) starting from the 5
th

bit and ending at the 8
th

bit

in MemBank-3, i.e., f4 (t , 5) = 10102.

Our design does not require a tag to equip a real hash function or

the engagement of its chip. It clearly applies the preceding princi-

ples. First, fl (t , r ) is evidently repeatable, predicable and dependent
on the inputs. Second, the randomness of fl (t , r ) is derived from

h(t ) and r , which are supposed to have a good randomness quality.

Third, we have two ways to access the tash value. We can use the

memory Read command to access MemBank-3 of a tag directly,

or use the selective reading function to access the tash value indi-

rectly (discussed later). Due to space limit, more discussions about

the design are presented in our technical report [62].

4.3 Design of the Tash Table Function
The tash table function treats a reader and multiple tags as if they

were a single virtual node, outputting a tash table. For simplicity,

we use

S ( a︸︷︷︸
Action

,

MemBank︷︸︸︷
b , p︸︷︷︸

Pointer

,

Length︷︸︸︷
l , m︸︷︷︸

Mask

,

Truncate︷︸︸︷
u )

to denote a selection command (i.e., Select) with an Action
(a), a MemBank (b), a Pointer (p), a Length (l ), a Mask (m)

3 0 4 1

S1

Tash 
table

Inventory
round

Selection 

21
3 4 6 875

F2(T, 5) = [3, 0, 4, 1]

0 1 2 3

1 0 1 0 1 0 0 1

QuerySelection

S⇤
S1(0, 3, 5, 2, 2, 0)

Fig. 5: Illustration of creating a tash table.Given that r = 5 and

l = 2, F2 (T , 5) = [3, 0, 4, 1]. Zooming into the 3
rd

entry-inventory,

tags t5, t6, t7 and t8 are selected to join the inventory. S2 means

this is the end command.

and a Truncate (u). The command aims to select a subset of tags

with a sub-bitstring that starts from the pth bit and ends at the

(p + l − 1)th bit in the bth memory bank that is equal tom. These

selected tags are requested to take an action a. The action codes are

shown in Table. 2. In particular, if u = 1, then each tag will reply

with a truncated EPC number.

The tash table function is designed as follows. An l-bit table B

consists of a total of 2
l
entries, each of which contains the amount

of tags mapped into it. In particular, the index number of each entry,

which ranges from 0 to 2
l − 1, is actually the tash values of the

tags mapped into this entry, i.e., B[i] = |{t | fl (t , r ) = i}|. When

constructing the ith entry, the reader performs selective reading

with two selection commands as follows:

S1 (0, 3, r , l , i, 0) and S2 (1, 1, 1, 1, 1, 1)

Command S1 selects a subset of tags with a sub-bitstring that starts

from the r th bit and ends at the (r + l − 1)th bit in the MemBank-3
that is equal to i . Notably, the involved sub-bitstring is the tash value
of a tag, i.e., fl (t , r ), which refers to De�nition. 6. Consequently,

only tags with tash values equal to i are selected to participate in

the incoming inventory, i.e., counted by the ith entry. The second

command S2 enables the selected tags to reply with the �rst bit of

their EPC numbers for the one-bit signals. We call such inventory

round as an entry-inventory. In this manner, we can obtain the

whole tash table by launching 2
l
entry-inventories.

To visually understand the procedure, we illustrate an example

in Fig. 5, where r = 5 and l = 2. The tash table contains 2
2
en-

tries; hence, four entry-inventories are launched. Their selection

commands are de�ned as follows:

¶ S1 (0, 3, 5, 2, 0, 0) and S2 (1, 1, 1, 1, 1, 1)

· S1 (0, 3, 5, 2, 1, 0) and S2 (1, 1, 1, 1, 1, 1)

¸ S1 (0, 3, 5, 2, 2, 0) and S2 (1, 1, 1, 1, 1, 1)

¹ S1 (0, 3, 5, 2, 3, 0) and S2 (1, 1, 1, 1, 1, 1)

For the third entry-inventory, the Mask �eld is set to 2 because

the index of the third entry is 2. Four tags (i.e., t5, t6, t7 and t8) are
selected to join in this entry-inventory. Thus, F2 (T , 5)[2] = 4.

For a tash table, note that (1) the sum of all its entries is equal

to the total number of tags, and (2) it allows an application to

selectively construct the entries of a tash table becaues each entry-

inventory are independent of each other and completely control-

lable. For example, we can skip the inventories of these entries that

are predicted to be empty.

6



4.4 Design of Tash Operators
A tash operator is connected to two tash tables, which have the same

dimensions but are constructed using two di�erent seeds. When

two seeds, r1 and r2, are given, we can obtain two l-bit tash tables:

B1 = Fl (T , r1) and B2 = Fl (T , r2). Our objective is to obtain a �nal

tash table B by performing one of the subsequent tash operators

on B1 and B2.
TashAND. If B = B1⊕B2, then each entry of B denotes the num-

ber of tags that are concurrently mapped into the corresponding

entries of B1 and B2. The selection commands for the ith entry-

inventory are de�ned as follows:

S1 (0, 3, r1, l , i, 0), S2 (2, 3, r2, l , i, 0), S2

From the action codes shown in Table. 2, the purpose of S1 with
action code of 0 is to select tags ∈ B1[i] and deselect tags < B1[i].
S2 with action code of 2 deselects tags < B2[i] and results in tags

∈ B2[i] doing nothing. After S1 is received, each tag exhibits one

of two states, i.e., selected or deselected. Then, S2 will make the

selected tags remain in their selected states if they match its condi-

tion (i.e., doing nothing); otherwise, it changes their states to the

deselected states (i.e., selected→ deselected), which is equivalent

to removing tags < B2[i] from tags ∈ B1[i]. Meanwhile, the tags

deselected by S1 remain in their states regardless of whether they

match (i.e., do nothing) or not match (i.e., deselected→ deselected)

the condition of S2. Finally, S2 is reserved for the one-bit presence

signal.

Tash OR. If B = B1 | |B2, then each entry of B is the number of

tags that mapped into the corresponding entry of either B1 or B2.

The selection commands for the ith entry-inventory are de�ned as

follows:

S1 (0, 3, r1, l , i, 0), S1 (1, 3, r2, l , i, 0), S2

Similarly, S1 selects tags ∈ B1[i] and deselect tags < B1[i]. S2 with
action code of 1 (see Table. 2) allows tags ∈ B2[i] to be selected

as well, but tags < B2[i] remain in their states (i.e., do nothing),

some of these tags may have been selected by S1. The process is
equivalent to holding the tags selected by S1 and incrementally

adding the new tags selected by S2.
Tash XOR. If B = B1 ⊗B2, then each entry of B is the number of

tags that are mapped into the corresponding entry of B1 but not into

the entry of B2. The selection commands for the ith entry-inventory

are de�ned as follows:

S1 (0, 3, r1, l , i, 0), S2 (5, 3, r2, l , i, 0), S2

Similarly, S2 allows tags ∈ B2[i] to be deselected (i.e., removed

from tags ∈ B1[i]) and tags < B2[i] to do nothing. This process is

equivalent to removing tags ∈ B2[i] from tags ∈ B1[i].
Tashhybrid.The aforementioned three operators can be further

applied to a hybrid operation. When k seeds (i.e., r1, · · · , rk ) are
given, we can obtain k tash tables. The selection commands for the

ith entry-inventory can be designed as follows:

S1 (0, 3, r1, l , i, 0), S2 (AC, 3, r2, l , i, 0),

· · · , Sk (AC, 3, rk , l , i, 0), S2

where AC represents the Action code, which is set to 2, 1 and

5 for tash AND, OR and XOR, respectively. The action code of

the �rst command is always set to 0. For example, the selection

commands in the ith entry-inventory for Fl (T , r1) ⊕ Fl (T , r2) | |
Fl (T , r3) ⊗ Fl (T , r4) are given by:

S1 (0, 3, r1, l , i, 0), S2 (2, 3, r2, l , i, 0),

S3 (1, 3, r3, l , i, 0), S4 (5, 3, r4, l , i, 0), S2

We leverage the action of a selection command to perform an oper-

ation in the physical layer before an entry-inventory starts, there-

fore, we introduce minimal additional communication overhead,

i.e., broadcasting multiple Select commands. Compared with the

multiple acquisitions of bitmaps used by prior HEPs, our solution

provides a one-stop solution that can signi�cantly reduce the total

overhead in such situation.

4.5 Discussion
Comparison with bitmap. A tash table evidently takes a con-

siderably longer time to obtain than a bitmap because a bitmap

requires only one round of inventory, whereas a tash table requires

multiple rounds. The additional time consumption is the trade-o�

for practicality because the reply of a COTS tag at the slot level is

out of control. Nevertheless, this additional cost brings an additional

bene�t, i.e., a tash table has the exact number of tags mapped onto

its each entry, which cannot be suggested by a bitmap. Moreover, a

one-stop operator service can save more time.

Embedded pseudo-random function. Qian et al. [40] and

Shahzad et al. [47] proposed a similar concept of utilizing a pre-

stored random bit-string to construct a lightweight pseudo-random

function. These studies have inspired our work. However, their

main objective of these previous researchers is to accelerate the cal-

culation of a random number, which still requires the engagement

with the chip of a tag, and thus, has never been implemented in

practice. In the present work, we do not require additional e�orts

on changing the logics of a tag chip and we associate this concept

with the function of selective reading, moving the main task from a

tag to a reader. Our design not only preserves the good features of

the hash function but also gives a practical solution. This process

has never been performed before.

5 TASH USAGE
This section revisits two classic problems of HEPs for usage study.

We propose two practical solutions that use tash primitives for

these problems. Note that in spite of two demonstration presented

in this section, our tash primitives especially the tash table can

serve any kind of HEPs.

5.1 Usage I: Cardinality Estimation
Cardinality estimation aims to estimate the total number of tags by

using one-bit presence signals that are received without collecting

each individual tag. The problem is formally de�ned as follows:

Problem 1. When a tag population of an unknown size n, a toler-
ance of β ∈ (0, 1), and a required con�dence level of α ∈ (0, 1) is given,
how can the number of tags n̂ be estimated such that Pr( |n̂ − n | ≤
βn) ≥ α?

A naive method would be to add all the entries of a tash table

together or let all tags reply at the �rst entry. Since each tag par-

ticipates in one and only one entry-inventory, the �nal number is

7



exactly equal to n. Keep in mind that our each entry corresponds

to a complete round inventory. The naive method is equivalent

to collecting them all, which is extremely time-consuming. We

subsequently provide a reliable solution in a probabilistic way.

Proposed Estimator. We leverage the number of tags mapped

into the �rst entry of a tash table to estimate n. LetX be the random

variable to indicate the value of the �rst entry of a tash table. Since

n tags are randomly and uniformly assigned into 2
l
entires, we

have

Pr(X =m) =

(
n

m

)
pm (1 − p)n−m (3)

where p = 1/2l . Evidently, variable X follows a standard Binomial

distribution with the parametersn andp, i.e.,X ∼ B (n,p). Therefore
the expected value µ = np and variance δ = np (1 − p). By equating

the expected value and an instanced valuem, our estimator n̂ is

given by:

n̂ =m/p =m2
l

(4)

The estimator only requires the �rst entry of the hash table, so it

skips inventories of other entries. We can choose an appropriate l
to ensure the estimation error within the given tolerance level β
with a con�dence of greater than α according to Theorem 1.

Theorem 1. The optimal dimension of the tash table is equal to

dlog
2

√
2·erf−1 (α )

√
2·erf−1 (α )−β

e, which results in an estimation error ≤ β with a

probability of at least α .

Proof. Please refer to [62] for the proof. �

5.2 Usage II: Missing Tag Detection
The purpose of missing tag detection is to quickly �nd out the miss-

ing tags without collecting all the tags in the scene. Such detection

is very useful, especially when thousands of tags are present. We

formally de�ne the problem of detecting missing tags in Problem 2.

We assume that the EPCs of all the tags in a closed system are

stored in a database and known in advance. This assumption is

reasonable and necessary, because it is impossible for us to tell that

a tag is missing without any prior knowledge of its existence.

Problem 2. How to quickly identifym missing out of n tags with
a false positive rate of γ at most?

Proposed detector. The underlying idea is to compare two tash

tables B and B̂. B is an intact tash table created by tashing all the

known EPCs which are stored in the database, while B̂ is an instance
tash table obtained from the tags in the scene. We can detect the

missing tags through comparing the di�erence between B and B̂. If

the residual table B − B̂ (i.e., entry-wise subtraction) equals 0, no

missing tag event happens. Otherwise, the tags mapped into the

non-zero entries of the residual table are missing. Fig. 6(a) illustrates

an example in which three tags, t1, t2 and t3, are mapped into the

intact tash table B. B̂ is an instance table where tag t2 is missing,

and thus B̂[4] = 1. Consequently, (B − B̂)[4] = 1, we can de�nitely

infer that one tag is missing. However, it is impossible for us to tell

which tag is missing because t2 and t3 are simultaneously mapped

into the fourth entry.

0 1 0 0 2 0 0 0
0 1 0 0 1 0 0 0

t1 t2 t3

r1 r1 r1

0 0 0 0 1 0 0 0B � bB

bB
B

(a) Tashing once

0 1 1 0 2 1 0 1
0 1 0 0 1 1 0 1

t1 t2 t3

r1 r1
r1r2

r2
r2

0 0 1 0 1 0 0 0B � bB
bB
B

(b) Tashing twice

Fig. 6: An example of missing detection. B is the intact tash

table generated using the known EPCs while B̂ is an instance over

the tags in the current scene.

Inspired by the Bloom �lter[7], we perform k tashings to identify

the missing tags as follows:

B = Fl (T , r1) | | . . . | |Fl (T , rk ) (5)

The �nal B after tash ORs is considered to use k independent hash

functions (i.e., induced by k random seeds) to map each tag into

B for k times, as shown in Fig. 6(b). The residual table of B − B̂ is

therefore viewed as a Bloom �lter which represents the missing

tags. Thereafter, to answer a query of whether a tag t is missing,

we check whether all entries set by fl (t , r1), · · · and fl (t , rk ) in
the residual table have a value of non-zero. If the answer is yes,

then tag t is the missing one. Otherwise, it is not the missing tag.

Fig. 6(b) illustrates an example in which each tag is tashed twice.

The missing tag t2 can be identi�ed because both the 2
rd

and the

4
th

entry in the residual table have value of non-zero. Despite

multiple tashings, the query may yield a false positive, where it

suggests a tag is missing even though it is not.

Analysis. To lower the rate of false positive rate, it is necessary

to answer two questions.

(1) How many tash functions do we need? Given the table dimen-

sion l , we expect to optimize the number of tash functions. There

are two competing forces: using more tash functions gives us more

chance to �nd a zero bit for a missing tag, but using fewer tash

functions increases the fraction of zero bits in the table. Afterm
missing tags are tashed into the table, the probability that a speci�c

bit is still 0 is (1 − 1

L )
km ≈ e−km/L

where L = 2
l
. Correspondingly,

the probability of a false positive p is given by

p = (1 − e−km/L )k (6)

Namely, a missing tag falls into k non-zero entries. Lemma. 1 sug-

gests that the optimal number of tash functions is achieved when

k = ln 2 · (L/m).

Lemma 1. The false positive rate is minimized when p = (1/2)k

or equivalently k = ln 2 · (L/m).

Proof. Please refer to [7] for the proof. �

(2) How large tash table is necessary to represent allm missing
tags? Recall that the false positive rate achieves minimum when

p = (1/2)k . Let p ≤ γ . After some algebraic manipulation, we �nd

L ≥
m log

2
(1/γ )

ln 2

=m log
2
e · log

2
(1/γ ) = 1.44m log

2
(1/γ ) (7)

Finally, putting the above conclusions together, we have the subse-

quent theorem.

Theorem 2. Setting the table dimension to dlog
2
(1.44m log

2
(1/γ ))e

and using dln 2 · (2l /m)e random seeds allow the false positive rate
of identifyingm missing tags lower than a given tolerance γ .

8



Reader Tags

GEN2

Client

LLRP

Fig. 7: Gen2 vs. LLRP. Gen2 is the air protocol between a reader

and tags while LLRP is the driver protocol between a client com-

puter and a reader. Our framework leverages LLRP to manipulate a

reader to broadcast Gen2 commands that we need.

6 TASH IMPLEMENTATION
Our implementation involves two kinds of protocols: UHF Gen2 air

interface protocol (Gen2) and Low Level Reader Protocol (LLRP).

As shown in Fig. 7, Gen2 protocol de�nes the physical and logical

interaction between readers and passive tags, while LLRP allows a

client computer to control a reader. Each client computer connects

one ore more RFID readers via Ethernet cables. LLRP is the driver
program (or driver protocol) for Gen2 readers. We leverage LLRP to

manipulate a reader to broadcast Gen2 commands that we need.

Notice that we do not need particularly implement Gen2 protocol,

which has been implemented in the COTS RFID devices that we are

using. Speci�cally, LLRP speci�es two types of operations: reader

operation (RO) and access operation (AO). Both operations are

represented in XML document form and transported to a reader

through TCP/IP.

Reader operation. RO de�nes the inventory parameters spec-

i�ed in the Gen2 protocol, such as bitmask, antenna power, and

frequency. Fig. 8 shows a simpli�ed instance of an ROSpec. An
ROSpec is composed of at least one AISpec. Each AISpec is

used for an antenna setting. An AISpec consists of more than

one C1G2Filters. The �lter functions as a bitmask. We can set

multiple selection commands by adding multiple C1G2Filters.
Access operation.AO de�nes the access parameters for writing

or reading data to and from a tag. We leverage the C1G2Write
inside an AOSpec to write the hash value of the EPC into a user-

de�ned memory bank. As the EPCs are highly related to the prod-

ucts the tags attached, the writing of hash values should be ac-

complished by the product manufactures or administrators. There

is almost no overhead to write data into MemBank-3 since it is

allowed to write a batch of tags simultaneously using Write com-

mands speci�ed in one AOSpec, without physically changing tags’
positions.

7 MICROBENCHMARK
We start with a few experiments that provide insight to our hash

primitives.

7.1 Experimental Setup
We evaluate the framework using COTS UHF readers and tags. We

use a total of 3 models of ImpinJ readers (R220, R420 and R680), each

of which is connected to a 900MHz and 8dB gain directional antenna.

In order to better understand the feasibility and e�ectiveness of

Tash in practice, we test a total of 3, 000 COTS tags with di�erent

models. We divide these tags into 10 groups of 300 tags each. The

tags of each group are densely attached to a plastic board which is

<ROSpec>
    <AISpec>
      <InventoryParameterSpec>
        <AntennaConfiguration>
          <C1G2InventoryCommand>
            <C1G2Filter>
              <T>Do_Not_Truncate</T>
              <C1G2TagInventoryMask>
                <MB>3</MB>
                <Pointer>32</Pointer>
                <TagMask Count=“5”>A1</TagMask>
              </C1G2TagInventoryMask>
              <C1G2TagInventoryStateAwareFilterAction>
                <Target>SL</Target>
                <Action>DeassertSLOrB_AssertSLOrA</Action>
              </C1G2TagInventoryStateAwareFilterAction>
            </C1G2Filter>
            <C1G2Filter>…</C1G2Filter>
          </C1G2InventoryCommand>
        </AntennaConfiguration>
      </InventoryParameterSpec>
    </AISpec>
</ROSpec>

MemBank
Pointer

MaskSelection

Action

Bitmask

Selection

Truncate

Fig. 8: LLRP RO speci�cation. The XML document de�nes vari-

ous parameters that are required for Select command.

placed in front of a reader antenna. Three hundreds is the maximum

number of tags that can be covered by one directional antenna in

our laboratory. We store the 3, 000 EPC numbers in our database

as the ground truth. The 128-bit MD5 is employed as the common

hash function to generate the hash values of EPCs. The experiments

with the same settings are repeated across the 10 groups, and the

average result is reported.

7.2 Compatibility Investigation
First, we investigate the compatibility of Gen2 across 10 di�erent

types of readers and 18 di�erent types of tags in terms of the func-

tions or commands that Tash requires. The readers and tags may

come from di�erent manufacturers but work together in practice.

These investigated products are all publicly claimed to be com-

pletely Gen2-compatible.

Reader compatibility.We investigate the R220, R420, and R680

models from ImpinJ [3], the Mercury6, Sargas and M6e models

from ThingMagic [4], as well as the ALR-F800, 9900+, 9680 and

9650 models from Alien [2]. We perform the investigation through

real tests for the �rst three models of readers (i.e., the ImpinJ se-

ries), and investigate the other readers through their data sheets

or manuals (because we are limited by the lack of hardware). The

Gen2-compatibility of readers is brie�y summarized in Table. 3.

Consequently, we have the subsequent �ndings. (1) All the readers

do support Write/Read command, which Tash uses for writing

or reading hash values of EPC numbers. (2) All the readers do

support the Select command, which Tash uses for the selective

reading. (3) However, our practical tests suggest that none model of

the ImpinJ series supports the Truncate command, which Tash

uses to hear the one-bit presence signal. The serviceability of other

readers is not clearly indicated in the manuals of those readers.

(4) The Gen2 protocol does not specify how many C1G2Filters

Table 3: Summary of Gen2-compatibility on reader

Commands or functions ImpinJ ThingMagic Alien
Write/Read X X X
Select X X X
Truncate × – –

Max No. of C1G2Filters 4 – –

Max No. of AISpecs 16 – –

9



Table 4: Summary of Gen2-compatibility on tag.
ImpinJ Monza Alien ALN

Commands 5 D E QT X-2K X-8K R6 R6-P R6-C 9840 9830 9662 9610 9726 9820 9715 9716 9629

MemBank1 (bits) 128 128 496 128 128 128 96 128/96 96 128 128 480 96-480 128 128 128 128 96

MemBank3 (bits) 32 32 128 512 2176 8192 × 32/64 32 128 128 512 512 128 128 128 128 512

Write cmd X X X X X X × X X X X X X X X X X X
Select cmd X X X X X X X X X X X X X X X X X X
Truncate cmd – – – – – – – – – – – – – – – – – –

and AISpecs that a reader should support. Our practical tests

suggest that the ImpinJ series supports 4 C1G2Filters and 16

AISpecs, which means that we can only use a maximum of four

tash operators each time.

Tag compatibility. We investigate 9 chip models from ImpinJ

Monza series and 9 additional models from Alien ALN series. The

majority of tags on the market contain these 18 models of chips

and customized antennas. Table. 4 summarizes the result of our

investigation, fromwhich we have the subsequent �ndings. (1) Tags

reserve 96 ∼ 480 bits of memory for storing EPC numbers, among

which the size of 96 bits has become the de facto standard. (2) Tash

requires MemBank-3 to store the hash values. The results of the

investigation show that almost all tags allow to write to and read

from the third memory bank, with an exception of ImpinJ Monza

R6, which does not have the user-de�ned memory. The size of the

third memory bank �uctuates around 32 ∼ 512 bits. The de facto

standard has become 128 bits. (4) All tags are claimed to support

the Truncate command according to their public data sheets.

However, we have no idea about their real serviceability due to the

lack of Truncate-supportable reader available for practical tests.
In our future work, we plan to utilize USRP for further tests.

Summary. Despite positive and public claims, our investigation

shows that current COTS RFID devices, regardless of readers or tags

and models, have some defects in their compatibility with Gen2,

especially with regard to Truncate. The reason, we may infer,

is that these commands are seldom used in practice and therefore

never receive attention from manufacturers. The partial compati-

bility of such devices cannot fully achieve the performance Tash

brings. Even so, we are obliged to make the claim, again, that our

design strictly follows the Gen2 protocol. We hope this work can

encourage manufacturers to upgrade their products (e.g., reader

�rmware) to achieve full compatibility.

7.3 Tash Function
Second, we evaluate the tash function with respect to the random-

ness and the accessibility.

Randomness. Randomness is the most important metric for a

hash function. It requires that the outputs of a hash function must

be uniformly distributed. To validate the randomness of the tash

function, we collect 99, 886 real EPC numbers from our partner

(i.e., an international logistics company), which introduced RFID

technology for sorting tasks �ve years ago. Each EPC number has

a length of 96 bits and encodes the basic information about the

package, such as sources, destinations, serial numbers, and so on.

We employ the 128-bit MD5 to create the hash values of these EPCs.
As the minimum size of the MemBank-3 is 32 bits (see Table. 3),

we choose to use only the �rst 32 bits for our tests. We traverse r
and l from 0 ∼ 31 and 1 ∼ 32 − r respectively. For each pair of r

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Percent(%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Percent of '0'

Percent of '1'

Ideal case

(a) Distributions of percents of ‘0’ and ‘1’

0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
Pass Rate(%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

r=16

r=20

r=26

(b) Results of random test

Fig. 9: Evaluation of tash function. (a) shows the CDF of per-

cents of ‘0’ and ‘1’ appearing in the tash values. (b) shows the CDF

of pass rates of random ness tests.

and l , we obtain 99, 886 tash values over all the EPCs. Across these
tash values, we further conduct the following two analysis: (1) We

merge 100 tash values, which are randomly selected from the above

results, into a long bit string. We then calculate the percents of

‘0’ and ‘1’ emerged in that bit string. This operation is repeated

for 100 times. Finally, totally 100 pairs of percents are obtained.

Their CDFs are plotted in Fig. 9(a). Ideally, each bit has a equal

probability of 0.5 to be zero or one if a hash function makes a good

randomicity. From the �gure, we can �gure out that the percents

distributed between 0.4 and 0.6. In particular, percents of ‘0’ and

‘1’ have means of 0.49 and 0.50 with standard deviations of 0.043

and 0.044 respectively. (2) We shu�e these values into 100 groups,

and employ the χ2-test with a signi�cance level of 0.05 to test each

group’s goodness-of-�ts of the uniform distribution (i.e., passed or

failed). Then, we �nally calculate the pass rate for a pair of setting.

In this manner, we totally obtain 496 pass rates. More than 60%

of the pass rates are over than 0.95. In particular, three sets of the

results with r = 16, 20 and 26 and a variable l , are selected to show

in Fig. 9(b). We �nd that 90% of the pass rates exceed 0.95 for the

three cases, and their median pass rates are around 0.97. Thus, the

two above statistical results suggest that our tash function has a

very good quality of randomness.

Accessibility. Accessibility refers to the ability to get access

to a tash value from a tag. As aforementioned, we have two ways

to acquire the tash values. The �rst way is to use the Read com-

mand. The second way is to indirectly access a tash value through

a selective reading. We choose the second method since it is the

basis of our design. Speci�cally, we perform a selective reading to

determine whether the tags are collected as expected, when given

random inputs and a possible tash value. We intensively and contin-

uously perform such readings across the 10 × 300 tags using three

4-port ImpinJ readers for three rounds of 24 hours in a relatively

isolated environment (e.g., an empty room without disturbance).

Surprisingly, we �nd all the reading results faithfully conform to

10



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Entry index

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

N
um

be
r 

of
 ta

gs

(a) Balance of tash table

0 1 2 3 4 5 6
Table dimension (l)

101

102

103

104

T
im

e 
co

ns
um

pt
io

n 
(m

s)

Not truncated Truncated

60%
drop

(b) Performance of tash table function

1 2 3 4 5 6
Dimension of tash table#

10

100

1000

10000

T
im

e(
m

s)

 Case 1 Case 2 Case 3

(c) Performance of tash operator

Fig. 10: Evaluation of tash table function and tash operator. (a) shows the balance of a 4-bit tash table across 300 tags using 100 di�erent
random seed. (b) shows the time consumption on gathering 6 tash tables with di�erent dimensions. (c) shows the time consumption on
performing OR on two tash tables.

our benchmarks without any exceptions. This shows that the se-

lective reading is well supported by the manufactures and is both

stable and reliable.

7.4 Tash Table Function
Third, we evaluate the performance of the tash table function in

terms of its balance and gathering speed.

Balance. A good hash table function will equally assign each

key to a bucket. We expect the output tash table to be as balanced

as possible. To show this feature, we generate 100 di�erent 4-bit

tash tables (i.e., each includes 16 entries) across 300 tags using

100 di�erent random seeds. If the tash table is well balanced, the

expected number of each entry should be very close to 300/16 =

18.7. Fig. 10(a) shows the mean number of tags in each entry as

well as their standard deviations. The average number across 16

entries equals 18.75, which is very close to the expected theoretical

value. The average standard deviation equals 0.44. Thus, the good

randomness quality of tash functions results in output tash tables

being well balanced.

Gathering speed. We then consider the time consumption of

gathering a tash table. Fixing the random seed, we vary the table di-

mension l from 0 to 6. We then measure the time taken on gathering

a tash table with the deployed 300 tags. Fig. 10(b) shows the result-

ing time as a function of the table dimension. From the immediately

above-mentioned �gure, we can observe the subsequent �ndings.

(1) When l = 0 without truncating reply, the result is equivalent to

collecting 300 complete EPCs of all the tags. Such time consump-

tion (i.e., 4, 524ms) is viewed as our baseline. (2) By contrast, when

l > 0 without truncating a reply, the collection amounts to divid-

ing all the tags into 2
l
groups “equally” and then collecting each

group independently. In this manner, when l ≤ 4, such “divide and

conquer” approach is better than “one time deal”, i.e., a drop in

overhead of about 10%. The Gen2 reader uses a Q-adaptive algo-

rithm for the anti-collision. This algorithm is able to adaptively

learn the best frame length from the collision history. Due to the

division, a smaller number of tags can make reader’s learning rela-

tively quicker and improve the overall performance. (3) However,

when l > 4, the performance of “divide and conquer” approach

starts to deteriorate. The ImpinJ reader supports 16 AISpecs at
most (see Table. 3). We have to re-send another ROSpec for the

remaining selective readings when the number of entry-inventory

is above 16 (i.e., l > 4), which introduces additional time consump-

tion. (4) We then consider the case where the reply is truncated to a

one-bit presence signal as assumed by HEPs. Due to the defects of

ImpinJ readers in the implementation of the Truncate command,

we cannot measure the actual time spent on collecting truncated

EPCs. We can only utilize the least-square algorithm to estimate the

transmission time for a one-bit presence signal. Our �tting results

show that truncating reply would introduce about 60% drop of the

overhead at least.

7.5 Tash Operators
Finally, we investigate the performance of tash operators. Superior

to existing HEPs, these operators allow us to perform set operations

on-tag and conduct a one-stop inventory. In particular, we show the

performance of OR as a representative across 300 tags. The tests for

other operators are similar and omitted due to the space limitation.

In the experiments, we �x the two random seeds but change the

dimension of tash table. Fig. 10(c) shows the results of three cases. In

Case 1, we independently produce 2 tash tables without truncating a

reply and conduct the OR in the application layer. In Case 2 and Case

3, we conduct on-tag OR function as Tash provides without andwith

truncating a reply respectively. Consequently, when the dimension

equals 2, Case 1 takes 6, 511ms on collecting two tables. On the

contrary, the amount of time taken is reduced to 4, 578ms (i.e., 29.7%
drop) if we perform an on-tag OR function even without truncation

(Case 2). Ideally, the amount of time taken could be further reduced

to 50.97ms by using a truncating reply (Case 3), which o�ers a

staggering drop in time usage by 99.22%. Our experiments relate

only to the amount of time spent on ORing two tables. It may be

predicted that muchmore outperformance will be gained if multiple

tables are involved. The tash operators that we design in this work

have never been proposed before.

8 USAGE EVALUATION
We then use our prototype to demonstrate the bene�ts and poten-

tials of Tash in two typical applications.

11



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Error Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

l=1
l=2
l=3
l=4
l=5
l=6

(a) Testbed

102 103 104 105

Number of Tags(#)

103

104

S
lo

t (
#)

ART
EZB
FNEB
MLE
UPE
Tash

(b) Large-scale simulation

Fig. 11: Cardinality estimation. (a) shows the CDF of error rates
for estimating 300 tags with our testbed. (b) shows the estimation

comparisons with other theoretical algorithms with simulation.

8.1 Usage I: Cardinality Estimation
We evaluate our estimation scheme through the testbed as well as

large-scale simulations.

Testbed based. Our scheme only uses the �rst entry of the tash

table for the estimation, thereby we only need one entry-inventory.

Fig. 11(a) shows the CDF of estimation results across 300 tags. We

de�ne the error rate as |n − n̂ |/n where n̂ is the estimated number.

As a result, 90% of the estimations have an error rate less than 0.1

and a median of 0.04 when setting the dimension l = 1. In this

case, almost half tags follow into the �rst entry so the rate could be

pretty high, at the price of longer inventory time. As l increases, the
error rate also increases because less samples are acquired for the

estimation. These experiments show the feasibility of using tash

table for cardinality estimation.

Simulation based. We then perform the evaluation through

large-scale simulations for two reasons: (1) ensuring its scalability

when meeting a huge number of tags. (2) making comparisons

with prior work, which are all simulation-based. We numerically

simulate in Matlab using tash scheme as well as other �ve prior

RFID estimation schemes: UPE[18], EZB[19], FNEB[15], MLE[23],

ART[47]. We implement these schemes by referring to the RFID

estimation tool developed by Shahzad[46]. Fig. 11(b) shows the time

cost with a varying n given α = 0.9 and β = 0.08. We observe that

our scheme is 5× faster than the others on average when n < 1000.

Thus our scheme is suitable for the estimation with a small number

of tags. When n > 1000, the performance of our scheme starts

to vibrate between ART and MLE, due to two reasons. First, our

scheme is not collision-free so that more e�orts are required to

deal with the collisions incurred by more tags. Second, the size of a

tash table can only increase in the power of two, making the size

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of Missing Tags(#)

0

0.01

0.02

0.03

0.04

0.05

0.06

F
al

se
 P

os
iti

ve
 R

at
e

(a) k = 2 and l = 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Dimension of tash table

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
al

se
 P

os
iti

ve
 R

at
e

(b) k = 2 andm = 10

Fig. 12: Missing detection with 300 tags. (a) The resulted FPRs

as function of the missing number (b) as function of the dimension

of tash tables.

always vibrate around the optimal one. Even so, the advantage of

our scheme is still clear: it is the �rst RFID estimation scheme that

can work in real life. Notice that ART claimed to work with RFID

systems because they are theoretically compatible with ALOHA

protocols. Actually, the current COTS RFID systems do not allow

user to control the low-level access, like �ned-grained adjustment of

frame length and obtaining slot-level feedback, which are necessary

to implement ART. Thus, there is no way for ART to implement

their algorithms over COTS RFID systems without any hardware

modi�cation and fabrication.

8.2 Usage II: Missing Detection
Finally, we evaluate the e�ectiveness of missing detection in real

case. We randomly removem tags from the testbed. Since we only

have 300 tags in total, we �x the number of random seeds to 2, i.e.,

k = 2. The performance is evaluated in term of the false positive

rate (FPR), which is the ratio of number of mistakenly detected

as missing tags to the total number of really missing tags. Our

scheme is able to successfully �nd out all the missing tags because

the residual table always contains the entries that missing tags are

tashed into. Fig. 12(a) shows the results of the �rst case in which

we use an 8-bit hash table (i.e., l = 8) to detect the missing tags.

Consequently, the FPR is maintained around 0.01 when m < 14

(i.e., 5% of the tags are missing). Fig. 12(b) shows the second case in

which we remove 10 tags and detect the missing tags by changing

the dimension of tash table. As Theorem. 2 suggests, we should set

l = 5, 6, 7 to guarantee the FPR γ < 0.2, 0.1, 0.01. From the �gure,

we can �nd that the results of our experiments completely conform

to this theorem. The real FPRs equal 0.21, 0.07 and 0.008 in the

three cases. Tash enabled missing detection works well in practice.

9 CONCLUSION
This work discusses a fundamental issue that how to supplement

hash functionality to existing COTS RFID systems, which is dis-

pensable for prior HEPs. A key innovation of this work is our design

of hash primitives, which is implemented using selective reading.

Tash not only makes a big step forward in boosting prior HEPs, but

also opens up a wide range of exciting opportunities.

Acknowledgments. The research is supported by GRF/ECS

(NO. 25222917), NSFC General Program (NO. 61572282) and Hong

Kong Polytechnic University (NO. 1-ZVJ3). We thank all the re-

viewers for their valuable comments and helpful suggestions, and

particularly thank Eric Rozner for the shepherding.

12



REFERENCES
[1] 2004. EPCglobal Gen2 Speci�cation. www.gs1.org/epcglobal. (2004).

[2] 2017. Alien. http://www.alientechnology.com. (2017).

[3] 2017. ImpinJ, Inc. http://www.impinj.com/. (2017).

[4] 2017. ThingMagic. http://www.thingmagic.com. (2017).

[5] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel

Poschmann, Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe.

2007. PRESENT: An ultra-lightweight block cipher. In CHES, Vol. 4727. Springer,
450–466.

[6] Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann, Matt JB

Robshaw, and Yannick Seurin. 2008. Hash functions and RFID tags: Mind the

gap. In Proc. of IACR CHES.
[7] Andrei Broder and Michael Mitzenmacher. 2004. Network applications of bloom

�lters: A survey. Internet Mathematics 1, 4 (2004), 485–509.
[8] Binbin Chen, Ziling Zhou, and Haifeng Yu. 2013. Understanding RFID counting

protocols. In Proc. of ACM MobiCom.

[9] Daniel M Dobkin. 2012. The RF in RFID: UHF RFID in Practice. Newnes.
[10] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. 2004. Strong

authentication for RFID systems using the AES algorithm. In CHES, Vol. 4.
Springer, 357–370.

[11] Martin Feldhofer and Christian Rechberger. 2006. A case against currently used

hash functions in RFID protocols. In On the move to meaningful internet systems
2006: OTM 2006 workshops. Springer, 372–381.

[12] Frost and Sullivan. 2011. Global RFID healthcare and pharmaceutical marke.

Industry Report (2011).
[13] Wei Gong, Kebin Liu, Xin Miao, and Haoxiang Liu. 2014. Arbitrarily accurate

approximation scheme for large-scale r�d cardinality estimation. In Proc. of IEEE
INFOCOM.

[14] Tim Good and Mohammed Benaissa. 2007. Hardware results for selected stream

cipher candidates. State of the Art of Stream Ciphers 7 (2007), 191–204.
[15] Hao Han, Bo Sheng, Chiu C Tan, Qun Li, Weizhen Mao, and Sanglu Lu. 2010.

Counting RFID tags e�ciently and anonymously. In Proc. of IEEE INFOCOM.

[16] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok

Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, et al. 2006.

HIGHT: A new block cipher suitable for low-resource device. In CHES, Vol. 4249.
Springer, 46–59.

[17] Yuxiao Hou, Jiajue Ou, Yuanqing Zheng, and Mo Li. 2015. PLACE: Physical layer

cardinality estimation for large-scale RFID systems. In Proc. of IEEE INFOCOM.

[18] Murali Kodialam and Thyaga Nandagopal. 2006. Fast and reliable estimation

schemes in RFID systems. In Proc. of ACM MobiCom.

[19] Murali Kodialam, Thyaga Nandagopal, and Wing Cheong Lau. 2007. Anonymous

tracking using RFID tags. In Proc. of IEEE INFOCOM.

[20] Binbin Li, Yuan He, Wenyuan Liu, Lin Wang, and Hongyan Wang. 2016. LocP:

An e�cient Localized Polling Protocol for large-scale RFID systems. In Proc. of
IEEE ICNP.

[21] Tao Li, Shigang Chen, and Yibei Ling. 2010. Identifying the missing tags in a

large RFID system. In Proc. of ACM MobiHoc.
[22] Tao Li, Shigang Chen, and Yibei Ling. 2013. E�cient protocols for identifying

the missing tags in a large RFID system. IEEE/ACM Transactions on Networking
21, 6 (2013), 1974–1987.

[23] Tao Li, Samuel Wu, Shigang Chen, and Mark Yang. 2010. Energy e�cient algo-

rithms for the RFID estimation problem. In Proc. of IEEE INFOCOM.

[24] Chae Hoon Lim and Tymur Korkishko. 2005. mCrypton-a lightweight block

cipher for security of low-cost RFID tags and sensors. InWISA, Vol. 3786. Springer,
243–258.

[25] Haoxiang Liu, Wei Gong, Xin Miao, Kebin Liu, and Wenbo He. 2014. Towards

adaptive continuous scanning in large-scale r�d systems. In Proc. of IEEE INFO-
COM.

[26] Jia Liu, Bin Xiao, Shigang Chen, Feng Zhu, and Lijun Chen. 2015. Fast RFID

grouping protocols. In Proc. of IEEE INFOCOM. 1948–1956.

[27] Xiulong Liu, Keqiu Li, Geyong Min, Yanming Shen, Alex X Liu, and Wenyu Qu.

2014. A multiple hashing approach to complete identi�cation of missing RFID

tags. IEEE Transactions on Communications 62, 3 (2014), 1046–1057.
[28] Xiulong Liu, Keqiu Li, Heng Qi, Bin Xiao, and Xin Xie. 2014. Fast counting the

key tags in anonymous RFID systems. In Proc.of IEEE ICNP.
[29] Xiulong Liu, Bin Xiao, Keqiu Li, Jie Wu, Alex X Liu, Heng Qi, and Xin Xie. 2015.

RFID cardinality estimation with blocker tags. In Proc. of IEEE INFOCOM.

[30] Xuan Liu, Bin Xiao, Shigeng Zhang, Kai Bu, and Alvin Chan. 2015. STEP: A

time-e�cient tag searching protocol in large RFID systems. IEEE Trans. Comput.
64, 11 (2015), 3265–3277.

[31] Wen Luo, Shigang Chen, Tao Li, and Shiping Chen. 2011. E�cient missing tag

detection in RFID systems. In Proc. of IEEE INFOCOM.

[32] Wen Luo, Shigang Chen, Tao Li, and Yan Qiao. 2012. Probabilistic missing-tag

detection and energy-time tradeo� in large-scale RFID systems. In Proc. of ACM
MobiHoc.

[33] Wen Luo, Shigang Chen, Yan Qiao, and Tao Li. 2014. Missing-tag detection

and energy–time tradeo� in large-scale RFID systems with unreliable channels.

IEEE/ACM Transactions on Networking 22, 4 (2014), 1079–1091.

[34] Wen Luo, Yan Qiao, and Shigang Chen. 2013. An e�cient protocol for RFID

multigroup threshold-based classi�cation. In Proc. of IEEE INFOCOM. 890–898.

[35] Wen Luo, Yan Qiao, Shigang Chen, and Min Chen. 2016. An e�cient protocol for

RFID multigroup threshold-based classi�cation based on sampling and logical

bitmap. IEEE/ACM Transactions on Networking 24, 1 (2016), 397–407.

[36] Cunqing Ma, Jingqiang Lin, and Yuewu Wang. 2012. E�cient missing tag detec-

tion in a large RFID system. In Proc. of IEEE TrustCom.

[37] Christian Pendl, Markus Pelnar, and Michael Hutter. 2012. Elliptic curve cryp-

tography on the WISP UHF RFID tag. RFID. Security and Privacy (2012), 32–47.

[38] Matthai Philipose, Joshua R Smith, Bing Jiang, Alexander Mamishev, Sumit Roy,

and Kishore Sundara-Rajan. 2005. Battery-free wireless identi�cation and sensing.

IEEE Pervasive computing 4, 1 (2005), 37–45.

[39] Axel Poschmann, Gregor Leander, Kai Schramm, and Christof Paar. 2007. New

Light-Weight DES Variants Suited for RFID Applications, proceedings of Fast

Software Encryption 14. Lecture Notes in Computer Science, Springer (to appear)
(2007).

[40] Chen Qian, Yunhuai Liu, Hoilun Ngan, and Lionel M Ni. 2010. Asap: Scalable

identi�cation and counting for contactless r�d systems. In Proc. of IEEE ICDCS.
[41] Chen Qian, Hoilun Ngan, Yunhao Liu, and Lionel M Ni. 2011. Cardinality estima-

tion for large-scale RFID systems. IEEE Transactions on Parallel and Distributed
Systems 22, 9 (2011), 1441–1454.

[42] Yan Qiao, Shigang Chen, and Tao Li. 2013. Tag-ordering polling protocols in

RFID systems. In RFID as an Infrastructure. Springer, 59–82.
[43] Yan Qiao, Shigang Chen, Tao Li, and Shiping Chen. 2011. Energy-e�cient polling

protocols in RFID systems. In Proc. of ACM MobiHoc.
[44] Carsten Rolfes, Axel Poschmann, Gregor Leander, and Christof Paar. 2008. Ultra-

lightweight implementations for smart devices–security for 1000 gate equivalents.

In CARDIS, Vol. 5189. Springer, 89–103.
[45] Vahid Shah-Mansouri and Vincent WS Wong. 2011. Cardinality estimation in

RFID systems with multiple readers. IEEE Transactions on Wireless Communica-
tions 10, 5 (2011), 1458–1469.

[46] Muhammad Shahzad. [n. d.]. RFID estimation tool. http://www4.ncsu.edu/

~mshahza/publications.html. ([n. d.]).

[47] Muhammad Shahzad and Alex X Liu. 2012. Every bit counts: fast and scalable

RFID estimation. In Proc. of ACM MobiCom.

[48] Muhammad Shahzad and Alex X Liu. 2015. Expecting the unexpected: Fast and

reliable detection of missing RFID tags in the wild. In Proc. of IEEE INFOCOM.

[49] Muhammad Shahzad and Alex X Liu. 2016. Fast and Reliable Detection and

Identi�cation of Missing RFID Tags in the Wild. IEEE/ACM Transactions on
Networking 24, 6 (2016), 3770–3784.

[50] Bo Sheng, Qun Li, and Weizhen Mao. 2010. E�cient continuous scanning in

RFID systems. In Proc. of IEEE INFOCOM.

[51] Bo Sheng, Chiu Chiang Tan, Qun Li, and Weizhen Mao. 2008. Finding popular

categories for RFID tags. In Proc. of ACM MobiHoc.
[52] W-K Sze, W-C Lau, and O-C Yue. 2009. Fast RFID counting under unreliable

radio channels. In Proc. of IEEE ICC.
[53] Chiu C Tan, Bo Sheng, and Qun Li. 2008. How to monitor for missing RFID tags.

In Proc. of IEEE ICDCS.
[54] Chiu C Tan, Bo Sheng, and Qun Li. 2010. E�cient techniques for monitoring

missing RFID tags. IEEE Transactions on Wireless Communications 9, 6 (2010),
1882–1889.

[55] Jue Wang, Haitham Hassanieh, Dina Katabi, and Piotr Indyk. 2012. E�cient and

reliable low-power backscatter networks. In Proc. of ACM SIGCOM. ACM, 61–72.

[56] Qingjun Xiao, Bin Xiao, and Shigang Chen. 2013. Di�erential estimation in

dynamic RFID systems. In Proc. of IEEE INFOCOM.

[57] Lei Xie, Hao Han, Qun Li, Jie Wu, and Sanglu Lu. 2014. E�ciently collecting

histograms over r�d tags. In Proc. of IEEE INFOCOM.

[58] Lei Xie, Qun Li, Xi Chen, Sanglu Lu, and Daoxu Chen. 2013. Continuous scanning

with mobile reader in RFID systems: An experimental study. In Proc. of ACM
MobiHoc. ACM, 11–20.

[59] Wei Xie, Lei Xie, Chen Zhang, Qiang Wang, Jian Xu, Quan Zhang, and Chaojing

Tang. 2014. RFID seeking: Finding a lost tag rather than only detecting its missing.

Journal of Network and Computer Applications 42 (2014), 135–142.
[60] Lei Yang, Yekui Chen, Xiang-Yang Li, Chaowei Xiao, Mo Li, and Yunhao Liu. 2014.

Tagoram: real-time tracking of mobile RFID tags to high precision using COTS

devices. In Proc. of ACM MobiCom.

[61] Lei Yang, Yao Li, Qiongzheng Lin, Xiang-Yang Li, and Yunhao Liu. 2016. Mak-

ing sense of mechanical vibration period with sub-millisecond accuracy using

backscatter signals. In Proc. of ACM MobiCom.

[62] Lei Yang, Qiongzheng Lin, Chunhui Duan, and Zhenlin An. 2017. Analog On-Tag

Hashing: Towards Selective Reading as Hash Primitives in Gen2 RFID Systems.

Technical Report (arXiv:1707.08883) (2017).
[63] Hirotaka Yoshida, Dai Watanabe, Katsuyuki Okeya, Jun Kitahara, Hongjun Wu,

Özgül Küçük, and Bart Preneel. 2007. MAME: A compression function with

reduced hardware requirements. In International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 148–165.

13

www.gs1.org/epcglobal
http://www.alientechnology.com
http://www.impinj.com/
http://www.thingmagic.com
http://www4.ncsu.edu/~mshahza/publications.html
http://www4.ncsu.edu/~mshahza/publications.html


[64] Jihong Yu, Lin Chen, and Kehao Wang. 2015. Finding Needles in a Haystack:

Missing Tag Detection in Large RFID Systems. arXiv preprint arXiv:1512.05228
(2015).

[65] Jihong Yu, Lin Chen, Rongrong Zhang, and Kehao Wang. 2016. On Missing Tag

Detection in Multiple-group Multiple-region RFID Systems. IEEE Transactions
on Mobile Computing (2016).

[66] Y Yu, Y Yang, Y Fan, and H Min. [n. d.]. Security Scheme for RFID Tag: Auto-ID

Labs white paper WP-HARDWARE-022. http://www.autoidlabs.org/. ([n. d.]).

[67] Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu. 2011. Moo: A

batteryless computational RFID and sensing platform. University of Massachusetts
Computer Science Technical Report UM-CS-2011-020 (2011).

[68] Rui Zhang, Yunzhong Liu, Yanchao Zhang, and Jinyuan Sun. 2011. Fast identi�-

cation of the missing tags in a large RFID system. In Proc. of IEEE SECON.

[69] Yan Zhang, Laurence T Yang, and Jiming Chen. 2009. RFID and sensor networks:
architectures, protocols, security, and integrations. CRC Press.

[70] Yuanqing Zheng and Mo Li. 2013. Fast tag searching protocol for large-scale

RFID systems. IEEE/ACM Transactions on Networking 21, 3 (2013), 924–934.

[71] Yuanqing Zheng and Mo Li. 2013. ZOE: Fast cardinality estimation for large-scale

RFID systems. In Proc. of IEEE INFOCOM.

[72] Yuanqing Zheng and Mo Li. 2014. Towards more e�cient cardinality estimation

for large-scale RFID systems. IEEE/ACM Transactions on Networking 22, 6 (2014),

1886–1896.

[73] Yuanqing Zheng and Mo Li. 2015. P-mti: Physical-layer missing tag identi�cation

via compressive sensing. IEEE/ACM Transactions on Networking 23, 4 (2015),

1356–1366.

14

http://www.autoidlabs.org/

	Abstract
	1 Introduction
	1.1 The State-of-the-Art
	1.2 Ten-Year Mirage of HEP
	1.3 Why Not Support Hashing?
	1.4 Our Contributions

	2 Related Work
	3 Overview
	3.1 Scope
	3.2 Definitions of Hash Primitives
	3.3 Solution Sketch

	4 Tash Design
	4.1 Background of Gen2 Protocol
	4.2 Design of the Tash Function
	4.3 Design of the Tash Table Function
	4.4 Design of Tash Operators
	4.5 Discussion

	5 Tash Usage
	5.1 Usage I: Cardinality Estimation
	5.2 Usage II: Missing Tag Detection

	6 Tash Implementation
	7 Microbenchmark
	7.1 Experimental Setup
	7.2 Compatibility Investigation
	7.3 Tash Function
	7.4 Tash Table Function
	7.5 Tash Operators

	8 Usage Evaluation
	8.1 Usage I: Cardinality Estimation
	8.2 Usage II: Missing Detection

	9 Conclusion
	References

