
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019 819

Tash: Toward Selective Reading as Hash
Primitives for Gen2 RFIDs

Qiongzheng Lin , Member, IEEE, ACM, Lei Yang , Member, IEEE,

Chunhui Duan , Student Member, IEEE, and Zhenlin An , Student Member, IEEE

Abstract— Deployment of billions of commercial off-the-shelf
(COTS) radio frequency identification (RFID) tags has drawn
much of the attention of the research community because of the
performance gaps of current systems. In particular, hash-enabled
protocol (HEP) is one of the most thoroughly studied topics in the
past decade. HEPs are designed for a wide spectrum of notable
applications (e.g., missing detection) without need to collect all
tags. HEPs assume that each tag contains a hash function, such
that a tag can select a random but predictable time slot to
reply with a one-bit presence signal that shows its existence.
However, the hash function has never been implemented in
COTS tags in reality, which makes HEPs a ten-year untouchable
mirage. This paper designs and implements a group of analog
on-tag hash primitives (called Tash) for COTS Gen2-compatible
RFID systems, which moves prior HEPs forward from theory to
practice. In particular, we design three types of hash primitives,
namely, tash function, tash table function, and tash operator. All
of these hash primitives are implemented through the selective
reading, which is a fundamental and mandatory functionality
specified in Gen2 protocol, without any hardware modification
and fabrication—a feature allowing zero-cost fast deployment on
billions of Gen2 tags. We further apply our hash primitives in
one typical HEP application (i.e., missing detection) to show the
feasibility and effectiveness of Tash. Results from our prototype,
which is composed of one ImpinJ reader and 3000 Alien tags,
demonstrate that the new design lowers 70% of the communi-
cation overhead in the air. The tash operator can additionally
introduce an overhead drop of 29.7%.

Index Terms— RFID, hash function, hash table function,
EPCglobal Gen2.

I. INTRODUCTION

RFID systems are increasingly used in everyday
scenarios, which range from object tracking, indoor

localization [1], vibration sensing [2], to medical-patient man-
agement, because of the extremely low cost of commercial
RFID tags (e.g., as low as 5 cents per tag). Recent reports

Manuscript received December 20, 2017; revised August 22, 2018; accepted
January 25, 2019; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor T. Spyropoulos. Date of publication February 14, 2019; date
of current version April 16, 2019. This work was supported in part by
the NSFC General Program under Grant 61572282, in part by University
Grants Committee/Early Career Scheme under Grant 25222917, in part by the
Shenzhen Basic Research Schema under Grant JCYJ20170818104855702, and
in part by the Alibaba Innovative Research Program. (Corresponding author:
Lei Yang.)

Q. Lin, L. Yang, and Z. An are with the Department of Computing,
The Hong Kong Polytechnic University, Hong Kong (e-mail: lin@tagsys.org;
young@tagsys.org; an@tagsys.org).

C. Duan is with the School of Software, Tsinghua University, Beijing
100084, China (e-mail: duan@tagsys.org).

Digital Object Identifier 10.1109/TNET.2019.2896348

show that many industries like healthcare and retailing are
moving towards deploying RFID systems for object tracking,
asset monitoring, and emerging Internet of Things [3]. The
Electronic Product Code global is an organization established
to accomplish the worldwide adoption and standardization
of EPC technology. It published the Gen2 air protocol [4]
for RFID system in 2004. A Gen2 RFID system consists of
a reader and many passive tags. The passive tags without
batteries are powered up purely by harvesting radio signals
from readers. This protocol has become the mainstream spec-
ification globally, and has been adopted as a major part of the
ISO/IEC 18000-6 standard.

Embedding Gen2 tags into everyday objects to construct
ubiquitous networks has been a long-standing vision. How-
ever, a major problem that challenges this vision is that
the Gen2 RFID system is not efficient [5]. First, the RFID
system utilizes simple modulations (e.g., ON-OFF keying or
BPSK) due to the lack of traditional transceiver [6], which
prevents tags from leveraging a suitable channel to transmit
more bits per symbol and increase the bandwidth efficiency.
Second, tags cannot hear the transmissions of other tags. They
merely reply on the reader to schedule their medium access
with the Framed Slotted ALOHA protocol, which results in
many empty and collided slots. This condition also retards the
inventory process. These two limitations force a reader to go
through a long inventory phase when it collects all the tags in
the scene.

Hash Enabled Protocol: Motivated by the aforementioned
performance gaps, the research community opened a new
focus on HEP design approximately 10 years ago. The key
idea that underlies HEP is that each tag selects a time slot
according to the hash value of its EPC and a random seed.
It then replies a one-bit presence signal rather than the entire
EPC number in the selected slot. HEPs treat all tags as if they
were a virtual sender, which outputs a gimped hash table (i.e.,
a presence bitmap) when responding to a challenge (i.e., a
random seed). Most importantly, HEPs assume the backend
server and every tag share a hash function, and the resulting
bitmap is random but predicable when the EPCs and seeds are
known. To better understand HEP, Fig. 1 shows a toy example
with n = 8 tags, each of which contains a unique EPC number
presented in binary format (e.g., 1010102), to illustrate the
HEP concept. The reader divides the time into d time slots
(e.g., d = 8.) and challenges these tags with the random
seed r. Each tag selects the (hd(EPC, r))th time slot to reply

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5804-4012
https://orcid.org/0000-0002-3809-3228
https://orcid.org/0000-0002-9290-8272
https://orcid.org/0000-0003-4120-773X

820 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Fig. 1. Hash enabled protocol illustration. In the figure, 8 tags emit one-bit
signals in the hd(EPC, r)th time slots respectively, which are challenged by
the random seed r and the frame length d. Finally, the reader abstracts tags’
responses as a presence bitmap.

the one-bit signal, where h(·) is a common hash function
(e.g., MD5, SHA-1) and hd(·) = h(·) mod d. The reader can
recognize two possible results for each time slot, namely,
empty and non-empty. The reader abstracts the reply results
into a bitmap (i.e., B = [0, 1, 1, 0, 1, 1, 1, 0]), where each
element contains two possible values, that is, 0 and 1, that
corresponds to empty and non-empty slots, respectively. The
upper layer then utilizes this returned bitmap to explore many
notable applications (see Sec. VIII).

HEP is advantageous in terms of speed and privacy. HEP is
faster than all prior per-tag reading schemes for two reasons.
First, collecting all the EPCs of the tags is time consuming
because of the aforementioned low-rate modulation, whereas
one-bit presence signals of HEPs save significantly commu-
nication time. Second, collisions are considered as one of the
major reasons that drag down the reading. On the contrary,
HEPs tolerate and consider collisions as informative. When
privacy issues are considered, the tag’s identification may be
unacceptable in certain instances. HEPs allow tags to send out
non-identifiable information (i.e., one-bit signals).

However, after 10 years of enthusiastic discussion about the
opportunities that HEPs provide, the reality is beginning to
settle: the functionality of hashing (i.e., hash function and hash
table function) has never been implemented in any Gen2 RFID
tags and considered by any RFID standard. No hint shows
that this function will be widely accepted in the near future.
The internal random functions inside tags seem to be an
option. Actually, they fail to fulfill the requirement of upper
application for two reasons: first, these random functions are
inaccessible because no program API is provided in current
COTS tags. Second, although the outputs of both hash function
and random function distribute randomly, the random function
is unpredictable and changes every time. The output of HEP
is desired to be predicable such that the upper layer can test
whether a known tag replies at an expect slot (see Sec. VII).

Why Is the Hash Function Unfavored?: A large number of
recent work have attempted to supplement hash functionality
to RFID tags, which can be categorized into three groups. First
group, like [7] and [8], modifies the common hash functions
to accommodate resource-constrained RFID tags. The second
group [8]–[15] designs new lightweight and efficient hash
functions dedicatedly for RFID tags. The third group seeks
new design of RFID tags like WISP [16] and Moo [17],
which gives tags more powerful computing capabilities

TABLE I

OVERVIEW OF CURRENT HASH FUNCTIONS 1

(e.g., hashing [18]). Unfortunately, as far as we know, none
of these work has been really applied in COTS RFID systems
yet.

A term called as Gate Equivalent (GE) is widely used
to evaluate a hardware design with respect to its efficiency
and availability. One GE is esquivalient to the area which
is required by the two-input NAND gate with the lowest
deriving strength of the corresponding technology. A glance
at Table I shows the available designs of hash functions for
RFID tags require a significant number of GEs, which are
completely unaffordable by current COTS tags. For example,
the most compact hash functions requires thousands of GEs
(e.g., 1, 075 GEs for PRESENT-80), which incur extremely
high energy consumption and manufacture cost. Thus, rel-
atively few RFID-oriented protocols that appeal to a hash
function can be utilized. RFID was expected to be one of
the most competitive automatic identification technologies due
to its many attractive advantages (e.g., simultaneous reading,
NLOS, etc.) compared with others (e.g., barcode). However,
this progress has been hindered for many years by the final
obstacle that the industry is attempting to overcome (i.e.,
the price). The industry is extremely sensitive to the cost
being doubled or tripled by the hash, although HEPs actually
introduce significant outperformance.

Our Contributions: This work designs a group of hash
primitives, Tash, which takes advantage of existing fundamen-
tal function of selective reading specified in Gen2 protocol,
without any hardware modification and fabrication. Our design
and implementation both strictly follow the Gen2 specification,
so it can work in any Gen2-Compatible RFID system. These
mimic (or analog) hash primitives act as we embedded real
hash circuits on tags,2 while we actually implement them in
application layer. Specifically, we design the following three
kinds of hash primitives to revive prior HEPs:
• We design a hash function (aka tash function) over

existing COTS Gen2 tags. The hash function outputs a hash

1‘-’ means the algorithm is presented in theory and does not have specific
power consumption.

2This work does not target at designing any analog circuit on readers or
tags, but offers a mimic hash function acting as we embed a hash circuit on
each tag.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TASH: TOWARD SELECTIVE READING AS HASH PRIMITIVES FOR GEN2 RFIDs 821

value associated with the EPC of the tag and a random seed,
as HEPs require.
• We design a hash table function (aka tash table function)

over all tags in the scene. It can produce a hash table (aka tash
table), which is more informative than a bitmap, over the all
tags in the scene. In particular, each entry indicates the exact
number of tags hashed into this entry.
• Major prior HEPs require multiple acquisitions of bitmaps

to meet an acceptable confidence. We design three tash oper-
ators (i.e., tash AND, OR and XOR) to perform entry-wise
set operations over multiple tash tables on tag in the physical
layer, which offers a one-stop acquisition solution.

Summary: It has been considered that HEPs are hardly
applied in practice because of the ‘impossible mission’ of
implementing hash function on COTS Gen2 tags [20]. In this
work, our main contribution lies in the practicality and usabil-
ity, that is, enabling billions of deployed tags to benefit
performance boost from prior well-studied HEPs, with our
hash primitives. To the best of our knowledge, this is the
first work to implement the hash functionality over COTS
Gen2 tags. Second, we provide an implementation of Tash
and show its feasibility and efficiency in two typical usage
scenarios. Third, we investigate several leading RFID products
in market including 18 types of tags and 10 types of readers,
in terms of their compatibility with Gen2, and conduct an
extensive evaluation on our prototype with COTS devices.

II. MOTIVATION AND APPLICATIONS

To drive our key point, we conduct a brief survey on HEP
applications. We list several key usage scenarios that we would
like to support. Our objective is not to complete the list, but
to motivate our design.

(1) Cardinality estimation. Estimating the size of a given
tag population is required in many applications, such as pri-
vacy sensitive systems and warehouse monitoring. Kodialam
and Nandagopal [21] presented a pioneer estimator. Given
that tags select the time slots uniformly because of hashing,
the expected number of ‘0’s equals n0 = d(1 − 1/d)n ≈
de−n/d, i.e., n and d are the number of tags and frame length.
Counting n0 in an instance yields a “zero estimator”, i.e.,
n̂ ≈ −d ln(n0/d). For example, n̂ = −8 × ln(3/8) = 7.8 in
our toy example, as shown in Fig. 1. In the past decade, dozens
of estimators [22]–[36] have been proposed. For example,
Qian et al. [26] proposed an estimation scheme called lottery
frame. Shahzad and Liu [28] estimated the number based on
the average run-length of ones in a bit string received using the
FSA. However, their schemes are limited to the application of
cardinality estimation. By contrast, tash operate as a general
solution that provides hash service to various applications
including the estimation.

(2) Missing detection. Consider a major warehouse that
stores thousands of apparel, shoes, pallets, and cases. How
can a staff immediately determine if anything is missing?
Tan et al. [37] conducted the early study on the fast detection
of missing-tag events by using the presence bitmap. They
assumed all EPCs were known in a closed system. Given that
hash results are predicable, the system can generate an intact

bitmap at the backend. We can identify the missing tags in a
probabilistic approach by comparing the intact and instanced
bitmaps. For example, if the second entry equals 0 (which is
supposed to be 1), the the tag 1010102 must be missing in our
toy example. The missing detection problem was firstly men-
tioned in [37]. Thereafter, many follow-up works [38]–[52]
have started to study the issue of false positives resulting from
the collided slots by using multiple bitmaps. Additional details
regarding this application are introduced in Sec. VII.

(3) Continuous reading. The traditional inventory approach
starts from the beginning each time it interrogates all
the tags, thereby making it highly time-inefficient. These
works [53]–[55] have proposed continuous reading protocols
that can incrementally collect tags in each step using the
bitmap. For example, Sheng et al. [53] aimed to preserve
the tags collected in the previous round and collect only
unknown tags. Xie et al. [54] conducted an experimental study
on mobile reader scanning. Liu et al. [55] initially estimated
the number of overlapping tags in two adjacent inventories
and then performed an effective incremental inventory.

(4) Data mining. These works [23], [56]–[59] discuss how
to discover potential information online through bitmaps.
For example, Sheng et al. [23] proposed to identify the
popular RFID categories using the group testing technique.
Xie et al. [56] found histograms over tags through a small
number of bitmaps. Luo et al. [57], [58] determined whether
the number of objects in each group was above or below a
threshold. Liu et al. [59] proposed a new online classification
protocol for a large number of groups.

(5) Tag searching. These works [60], [61] have studied the
tag searching problem that aims to find wanted tags from
a large number of tags using bitmaps in a multiple-reader
environment. Zheng and Li [61] utilized bitmaps to aggregate
a large volume of RFID tag information and to search the tags
quickly. Liu et al. [60] first used the testing slot technique to
obtain the local search result by iteratively eliminating wanted
tags that were absent from the interrogation region.

(6) Tag polling. Qiao et al. [62], [63] and Li et al. [64]
consider how to quickly obtain the sensing information from
sensor-augmented tags. The system requires to assign a time
slot to each tag using the presence bitmap. In summary, all
the aforementioned HEP designs have allowed RFID research
to develop considerably in the past decade. All the work can
be boosted by our hash primitives.

III. A PRIMER ON GEN2 PROTOCOL

The Gen2 standard defines air communication between
readers and tags. It adopts the reader-talks-first mode, in which
the reader dominates communication and all the tags follow
its commands. On the basis of [4] and [65], we introduce its
four central functions (i.e., F1 ∼ F4) that we will employ:

F1 (Memory Model): Gen2 specifies a simple tag mem-
ory model [4, pp. 44–46]. Each tag contains four types
of non-volatile memory blocks (called memory banks):
(1) MemBank-0 is reserved for password associated with the
tag. (2) MemBank-1 stores the EPC number. (3) MemBank-2
stores the TID that specifies the unchangeable tag and vendor

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

822 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

TABLE II

ACTIONS IN THE Select COMMAND

Fig. 2. The format of Select command. The command is composed of 8
fields, which are combined to select a subset of the tags based on a bitmask
and specify their reply actions.

specific information. (4) MemBank-3 is a customized storage
that contains user-defined data.

F2 (Selective Reading): Gen2 specifies that each inventory
must be started with Select command [4, pp. 72–73]. The
reader can use this command to choose a subset of tags that
will participate in the upcoming inventory round. In particular,
each tag maintains a flag variable SL. The reader can use
the Select command to turn the SL flags of tags into
asserted (i.e., true) or deasserted (i.e., false). The
Select command comprises six mandatory fields and one
optional field apart from the constant cmd code (i.e., 10102),
as shown in Fig. 2.
• Target. This field allows a reader to change SL flags or

the inventoried flags of the tags. The inventoried flags are used
when multiple readers are present. Such scenario is irrelevant
to our requirements. Thus, we aim to change SL flags only by
setting Target = 1002.
• Action. This field specifies an action that will be

performed by the tags. Table II lists eight action codes to which
the tag makes different responses. For example, the matching
or not-matching tags assert or deassert their SL flags when
Action = 0. We leverage this useful feature to design tash
operators.
• MemBank, Pointer, Length and Mask. These four

fields are combined to compose a bitmask. The bitmask indi-
cates which tags are matched or not-matched for an Action.
The Mask contains a variable length binary string that should
match the content of a specific position in the memory of a
tag. The Length field defines the length of the Mask field
in bits. The Mask field can be compared with one of the four
types of memory banks in a tag. The MemBank field specifies
which memory bank the Mask will be compared with. The
Pointer field specifies the starting position in the memory
bank where the Mask will be compared with. For example,
if we use a tuple (b, p, l, m) to denote the four fields, then

Fig. 3. Illustration of selective reading in Gen2. There are total 7 tags
covered by a reader. The reader initiates a selective reading using a Select
command with parameters: Action = 0, MemBank = 3, Pointer = 1,
Length = 1, Mask = 01. This command means that these tags (highlighted
with dark red) whose data starting at the second bit with a length of 2 bits
in the MemBank-3 equals 012 are selected to participate in the incoming
inventory, while other tags (with gray color) that do not meet the condition
remain silent. As a result, only 4 tags are collected in this round of inventory.

only the tags with data starting at the pth bit with a length of
l bits in the bth memory bank that is equal to m are matched.

To visually understand the selective reading, we show an
example in Fig. 3 in which 4 out of 7 tags are selected to
participate in the incoming inventory. Complex and multiple
subsets of tags can be facilitated by issuing a group of
Select commands to choose a subset of tags before an
inventory round starts. For example, we can issue two Select
commands: one for division and another for one-bit reply. Note
the Truncate enabled Select command must be the last
one if multiple selection commands are issued [4].

F3 (Truncated Reply): Gen2 allows tags to reply a truncated
reply (i.e., replying a part of EPC) through a special Select
command with an enabled Truncate field, making a one-bit
presence signal possible. When Truncate is enabled (i.e.,
set to 1), then the corresponding bitmask is not used for the
division of tags, but lets tags reply with a portion of their EPCs
following the pattern specified by the bitmask. Note that when
Truncate is enabled, the MemBank must be set to the EPC
bank (i.e., MemBank = 1) and such Select command must
be the last one.

F4 (Query Model): Followed by a group of Select com-
mands, Query command [4, pp. 76–80] starts a new inventory
round over a subset of tags, chosen by the previous Select
commands. There are 7 fields in the Query command.
We only focus on Sel field, which is most tightly relevant
to the selective reading. As mentioned above, the Select
command has divided the tags into two opposite subsets with
asserted and deasserted SL respectively. The Sel field spec-
ifies which subset will reply in the current inventory round.
If Sel = 112, the tags with asserted SL reply. If Sel = 102,
the tags with deasserted SL reply. We choose the tags with
asserted SL by default.

IV. TASH DESIGN

Tash is a framework providing a group of hash primitives
to Gen2 RFIDs. The proposed hash primitives are the tash
function, the tash table function, and three kinds of tash
operators (i.e., tash AND, OR and XOR). In this section,
we present the technical designs of these primitives.

A. Design of the Tash Function

An l-bit tash function is actually a hash function fl(t, r) :
T ×R → 2l, where T and R are the domains of EPCs of the

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TASH: TOWARD SELECTIVE READING AS HASH PRIMITIVES FOR GEN2 RFIDs 823

tags and random seeds. It outputs an l-bit integer v:

v = fl(t, r) (1)

We call l the dimension of tash function (i.e., l = 0, 1, 2, . . .).
The tash value v is an integer ∈ [0, 2l − 1].

A tash function is essentially a hash function that is indis-
pensable to the presence bitmap. We design the tash function
while following the three principles outlined as follows. The
first principle requires that the tash result must be dependent on
the input EPC and the seed. Moreover, it must be predictable
as long as all the input parameters are known. The second
principle requires the output values to be random, i.e., uni-
formly distributed in [0, 2l − 1]. Even a one bit difference in
the input will result in a completely different outcome. The
third principle requires a method that can access the tash result
of a tag directly or indirectly.

We have constructed the tash function as follows by apply-
ing the aforementioned principles: given a tag with an EPC
of t, we firstly calculate the hash value of the EPC offline,
using a common perfect hash function like 128-bit MD5 or
SHA-1. Let h(t) denote the calculated hash value. We then
write h(t) into the tag’s user-defined memory bank of the tag,
i.e., MemBank-3, for later use.

Definition 1 (Tash Value): The l-bit tash value of tag t
challenged by seed r is defined as the value of the sub-bitstring
starting from the rth bit and ending at the (r + l− 1)th bit in
the MemBank-3 of the tag.

The above definition formally presents the tash value.
Evidently, fl(t, r) is actually a portion of h(t), and thus, the
parameter r ∈ [0,L − 1] and l ∈ [1,L − r], where L is the
length of the hash value (e.g., 128 bits). Fig. 4 shows a toy
example wherein the MemBank-1 and MemBank-3 of the
tag store its EPC t and the hash value h(t), respectively. When
r = 5 and l = 4 are inputted, the tash value that this tag
outputs is 10102, which is the sub-bitstring of h(t) starting
from the 5th bit and ending at the 8th bit in MemBank-3,
i.e., f4(t, 5) = 10102.

Our design does not require a tag to equip a real hash
function or the engagement of its chip. It clearly applies
the preceding principles. First, fl(t, r) is evidently repeatable,
predicable and dependent on the inputs. Second, the random-
ness of fl(t, r) is derived from h(t) and r, which are supposed
to have a good randomness quality. Third, we have two ways to
access the tash value. We can use the memory Read command
to access MemBank-3 of a tag directly, or use the selective
reading function to access the tash value indirectly (discussed
later).

Discussion: A few points are worth-noting about the design:
• As the tash value is a portion of the hash value, if two ran-

dom numbers may cover a common sub-string. For example,
if r1 and r2 differ by 1, there exist l−1 same bits with 50% of
probability that two hash values are same, although such case
occurs with a small probability, i.e., ≈ 127/(128×128)×0.5 =
0.0039. If some upper applications require extremely strong
independence, we should generate the second random number
r2 meeting the condition of r2 < r1 − l and r2 ≥ r + l, so as
to avoid the common coverage and potential relevance.

Fig. 4. Illustration of a tash function. Suppose the EPC of the tag is t,
we pre-store the real hash value of t (i.e., h(t)) in its MemBank-3. The
tash function fetches a substring of the real hash as its output. For example,
suppose the input parameters are (5, 4), then the result of tash function is
equal to 10102 , i.e., the substring within [5, 9).

• The design of tash function involves the MemBank-3,
i.e., the user-defined storage. We can use Write command
to store any data into this memory bank. Our compatibility
report (shown in Sec. VI) suggests that almost all types of
tags support both MemBank-3 and Write command except
one read-only type (i.e., ImpinJ Monza R6). Our approach is
generally practicable.
• Our design targets at enabling COTS tags, billions of

which have been deployed in recent years, to obtain perfor-
mance advantages from well-studied hash based protocols,
instead of enhancing their security or privacy preservation.
Our design still follows the current COTS tag’s security
mechanism, i.e., password protected memory access.
• Tash function also offers a good feature that the com-

putation is one way and irreversible, i.e., the output reveals
nothing about the input. This feature is inherited from the hash
function. It may be useful for privacy protection in practice.
However, this topic is beyond the scope of this work.

B. Design of the Tash Table Function

We next introduce the design of tash table function, which
is formally defined as below.

Definition 2 (Tash Table Function): An l-bit tash table
function can assign each tag t from a given set into the ith

entry of a hash table (aka tash table) with a random seed r,
where i = fl(t, r). Each entry of the tash table is the number
of tags tashed into it.

Let B and Fl denote a tash table and a tash table function
respectively. The tash table function takes a set of tags (i.e.,
T = {t1, t2, . . . , tn}) and a random number r as input and
outputs a tash table B, denote by:

B = Fl(T, r) (2)

where B[i] = |{t|fl(t, r) = i}| (i.e., the number of tags tashed
into the ith entry) for ∀t ∈ T . Let L = 2l, which is defined
as the size of the tash table. The tash table function is the
core function that HEPs expect. HEPs consider the reader as
well as all tags as a virtual node equipping with tash table
function. When inputing a random seed, the node would output
a tash table. HEPs then utilize such table to provide various
services (e.g., missing detection or cardinality estimation.).
It worths noting that superior to the bitmap employed in prior
HEPs, our tash table is a perfect table that contains the exact

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

824 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Fig. 5. Illustration of creating a tash table. Given that r = 5 and l = 2,
F2(T, 5) = [3, 0, 4, 1]. Zooming into the 3rd entry-inventory, tags t5, t6, t7
and t8 are selected to join the inventory. � of S� indicates the ending symbol.

number of tags tashed into each entry. Clearly, the table is
completely backward compatible with prior HEPs because it
can be forcedly converted into a presence bitmap.

Here, we leverage the selective reading (see Sec. III) to
design the tash table function. For simplicity, we use

S(a
︸︷︷︸

Action

,

MemBank
︷︸︸︷

b , p
︸︷︷︸

Pointer

,

Length
︷︸︸︷

l , m
︸︷︷︸

Mask

,

Truncate
︷︸︸︷

u)

to denote a Select with an Action (a), a MemBank
(b), a Pointer (p), a Length (l), a Mask (m) and a
Truncate (u). The command aims to select a subset of tags
with a sub-bitstring that starts from the pth bit and ends at
the (p + l − 1)th bit in the bth memory bank that is equal to
m. These selected tags are requested to take an action a. The
action codes are shown in Table. II. In particular, if u = 1,
then each tag will reply with a truncated EPC number.

The tash table function is designed as follows. An l-bit
table B consists of a total of 2l entries, each of which
contains the amount of tags mapped into it. In particular,
the index number of each entry, which ranges from 0 to 2l−1,
is actually the tash values of the tags mapped into this entry,
i.e., B[i] = |{t|fl(t, r) = i}|. When constructing the ith entry,
the reader performs the selective reading with two selection
commands as follows:

S1(0, 3, r, l, i, 0) and S�(1, 1, 1, 1, 1, 1)

Command S1 selects a subset of tags with a sub-bitstring that
starts from the rth bit and ends at the (r + l − 1)th bit in
the MemBank-3 that is equal to i. Notably, the involved
sub-bitstring is the tash value of a tag, i.e., fl(t, r), which
refers to Definition. 1. Consequently, only tags with tash values
equal to i are selected to participate in the incoming inventory,
i.e., counted by the ith entry. The second command S� enables
the selected tags to reply with the first bit of their EPC
numbers for the one-bit signals. We call such inventory round
as an entry-inventory. In this manner, we can obtain the whole
tash table by launching 2l entry-inventories.

To visually understand the procedure, we illustrate an exam-
ple in Fig. 5, where r = 5 and l = 2. The tash table contains
22 entries; hence, four entry-inventories are launched. Their

Fig. 6. Illustration of tash operators. The left shows two independent tash
tables, while the right shows the results of the two tash tables with tash AND,
OR and XOR.

selection commands are defined as follows:

❶ S1(0, 3, 5, 2, 0, 0) and S�(1, 1, 1, 1, 1, 1)
❷ S1(0, 3, 5, 2, 1, 0) and S�(1, 1, 1, 1, 1, 1)
❸ S1(0, 3, 5, 2, 2, 0) and S�(1, 1, 1, 1, 1, 1)
❹ S1(0, 3, 5, 2, 3, 0) and S�(1, 1, 1, 1, 1, 1)

For the third entry-inventory, the Mask field is set to 2 because
the index of the third entry is 2. 4 tags (i.e., t5, t6, t7 and t8) are
selected to join in this entry-inventory. Thus, F2(T, 5)[2] = 4.

For a tash table, note that (1) the sum of all its entries
is equal to the total number of tags, and (2) it allows an
application to selectively construct the entries of a tash table
becaues each entry-inventory are independent of each other
and completely controllable. For example, we can skip the
inventories of these entries that are predicted to be empty.

C. Design of Tash Operators

Most prior HEPs adopt probabilistic ways and their results
are guaranteed with a given confidence level. To meet the level,
they usually combine multiple bitmaps, which are acquired
through multiple rounds and challenged by different seeds.
We abstract such combination into three basic tash operators,
namely, tash AND, OR and XOR. These operators can
comprise other complex operations. Let B1 = Fl(T, r1) and
B2 = Fl(T, r2) denote two tash tables acquired twice with
two different seeds, r1 and r2. Our objective is to obtain the
final tash table B by performing one of the subsequent tash
operators on B1 and B2.

Definition 3 (Tash AND): The tash AND (denoted by ⊕)
of two tash tables is to obtain the intersection of two corre-
sponding entry sets. Formally, B = B1 ⊕ B2, where B[i] =
|{t|fl(t, r1) = i&fl(t, r2) = i}|.

Tash AND: The tash AND is aimed at obtaining the common
intersection of corresponding entries from two tash tables. For
example, as shown in Fig. 6, B1[1] and B2[1] count {t1, t2}
and {t2} respectively. However, (B1 ⊕ B2)[1] = |{t2}| = 1,
which counts t2 only. Let B = B1 ⊕ B2, then each entry of
B denotes the number of tags that are concurrently mapped
into the corresponding entries of B1 and B2. The selection
commands for the ith entry-inventory are defined as follows:

S1(0, 3, r1, l, i, 0), S2(2, 3, r2, l, i, 0), S�

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TASH: TOWARD SELECTIVE READING AS HASH PRIMITIVES FOR GEN2 RFIDs 825

From the action codes shown in Table. II, the purpose of
S1 with action code of 0 is to select tags ∈ B1[i] and
deselect tags /∈ B1[i]. S2 with action code of 2 deselects tags
/∈ B2[i] and results in tags ∈ B2[i] doing nothing. After S1

is received, each tag exhibits one of two states, i.e., selected
or deselected. Then, S2 will make the selected tags remain
in their selected states if they match its condition (i.e., doing
nothing); otherwise, it changes their states to the deselected
states (i.e., selected → deselected), which is equivalent to
removing tags /∈ B2[i] from tags ∈ B1[i]. Meanwhile, the tags
deselected by S1 remain in their states regardless of whether
they match (i.e., do nothing) or not match (i.e., deselected →
deselected) the condition of S2. Finally, S� is reserved for the
one-bit presence signal.

Definition 4 (Tash OR): The tash OR (denoted by ||) of
two tash tables is to merge two corresponding entry sets.
Formally, B = B1||B2, where B[i] = |{t|fl(t, r1) = i||
fl(t, r2) = i}|.

Tash OR: The tash OR is aimed at obtaining the total
number of tags mapped into the corresponding entries in two
tash tables. Note tash OR is not the same as the entry-wise
sum, i.e., B1||B2 	= B1 + B2 because the tags twice mapped
into a same entry are counted only once. As shown in Fig. 6,
(B1||B2)[5] = |{t5, t6, t7}| = 3 although B1[5] + B2[5] = 5
because t6 and t7 appear twice in the two tash tables. Let
B = B1||B2, then each entry of B is the number of tags that
mapped into the corresponding entry of either B1 or B2. The
selection commands for the ith entry-inventory are defined as
follows:

S1(0, 3, r1, l, i, 0), S1(1, 3, r2, l, i, 0), S�

Similarly, S1 selects tags ∈ B1[i] and deselect tags /∈ B1[i].
S2 with action code of 1 (see Table. II) allows tags ∈ B2[i]
to be selected as well, but tags /∈ B2[i] remain in their states
(i.e., do nothing), some of these tags may have been selected
by S1. The process is equivalent to holding the tags selected
by S1 and incrementally adding the new tags selected by S2.

Definition 5 (Tash XOR): The tash XOR (denoted by ⊗)
is to remove the intersection of two corresponding entry sets
from the first entry set. Formally, B = B1 ⊗ B2 such that
B[i] = |{t|fl(t, r1) = i & fl(t, r2) 	= i}|.

Tash XOR: The tash XOR is aimed at obtaining the total
number of the set difference. As Fig. 6 shows, B1[5] =
|{t5, t6, t7}| and B2[5] = |{t6, t7}|. Then (B1 ⊗ B2)[5] =
|{t5}| = 1. Let B = B1 ⊗ B2, then each entry of B is the
number of tags that are mapped into the corresponding entry
of B1 but not into the entry of B2. The selection commands
for the ith entry-inventory are defined as follows:

S1(0, 3, r1, l, i, 0), S2(5, 3, r2, l, i, 0), S�

Similarly, S2 allows tags ∈ B2[i] to be deselected
(i.e., removed from tags ∈ B1[i]) and tags /∈ B2[i] to do
nothing. This process is equivalent to removing tags ∈ B2[i]
from tags ∈ B1[i].

Tash Hybrid: The aforementioned three operators can be
further applied to a hybrid operation. When k seeds (i.e.,
r1, · · · , rk) are given, we can obtain k tash tables. The selec-
tion commands for the ith entry-inventory can be designed as

Fig. 7. Illustration of tash modulo. (a) shows the tash table of Fl(T, r);
(b) shows the tash table of Fl(T, r) mod 5 where the modulo operation
moves tags in the entries which indexes (i.e., ith) are greater than 4 to
(i mod 5)th entries.

follows:

S1(0, 3, r1, l, i, 0), S2(AC, 3, r2, l, i, 0),
· · · , Sk(AC, 3, rk, l, i, 0), S�

where AC represents the Action code, which is set to 2, 1 and
5 for tash AND, OR and XOR, respectively. The action code of
the first command is always set to 0. For example, the selection
commands in the ith entry-inventory for Fl(T, r1)⊕Fl(T, r2)||
Fl(T, r3) ⊗Fl(T, r4) are given by:

S1(0, 3, r1, l, i, 0), S2(2, 3, r2, l, i, 0),
S3(1, 3, r3, l, i, 0), S4(5, 3, r4, l, i, 0), S�

We leverage the action of a selection command to perform
an operation in the physical layer before an entry-inventory
starts, therefore, we introduce minimal additional communica-
tion overhead, i.e., broadcasting multiple Select commands.
Compared with the multiple acquisitions of bitmaps used by
prior HEPs, our solution provides a one-stop solution that can
significantly reduce the total overhead in such situation.

D. Design of Tash Modulo

From the above design, the size of a tash table must be
the power of 2 (e.g., 2l = 2, 4, 8, · · ·), determined by the
dimension of the table. In practice, the table size is a crucial
performance parameter that we wish to optimize, as will be
shown in Sec. VII: using larger table gives us more chances
to reduce the false positives but is time-consuming. The
optimal size of tash table should be carefully calculated. The
current dimension-determined table size is not reasonable. For
example, if the optimal size is 256, the real size must be set
to 1024 = 210 ≤ 256 for meeting the constraint of 2l.

To address the above issue, we design the tash modulo
operation to allow arbitrary table size, denoted by

Fl(T, r) mod L

As illustrated in Fig. 7, the modulo operation moves the tags
tashed at ith entry (i.e., i ≥ L) to the (i mod L)th entry. As a
result, the ith entry in the new tash table contains all tags
whose tash values equal i + k × L where k = 0, 1, 2,
This is equivalent to performing the Tash OR. Thus, when

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

826 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

constructing the ith entry, the reader performs the selective
reading with several commands as follows:

S1(0, 3, r, l, i, 0), S2(5, 3, r, l, i + L, 0), · · · ,

SK(5, 3, r, l, KL, 0), S�

where K = �2l/L. The action code 5 is utilized for the tash
OR. For example, the selective reading commens broadcasted
for the 0th entry shown in Fig. 7 are sketched:

S1(0, 3, r, l, 0, 0), S2(5, 3, r, l, 5, 0), S�

E. Further Discussion

At first glance, obtaining a tash table takes a relatively
longer time than obtaining a bitmap because a bitmap requires
only one round of inventory, whereas a tash table requires mul-
tiple rounds. The additional time consumption is a trade-off for
practicality because the reply of a COTS tag at the slot level
is beyond control. Nevertheless, this additional cost brings an
additional benefit, i.e., a tash table has the exact number of
tags mapped onto its each entry, which cannot be suggested
by a bitmap. Moreover, a one-stop operator service can save
more time.

Qian et al. [25] and Shahzad and Liu [28] proposed a
similar concept of utilizing a pre-stored random bit-string to
construct a lightweight pseudo-random function. These studies
have inspired our work. However, their main objective of
these previous researchers is to accelerate the calculation of
a random number, which still requires the engagement with
the chip of a tag, and thus, has never been implemented in
practice. In the present work, we do not require additional
efforts on changing the logics of a tag chip and we associate
this concept with the function of selective reading, moving the
main task from a tag to a reader. Our design not only preserves
the good features of the hash function but also gives a practical
solution. This process has never been performed before.

Channel error is one of the most notorious problems of
HEPs because pure one-bit signal transmission is vulnerable
to ambient interference. Thus, an additional error control
mechanism is expected to be applied to HEPs. In the Gen2 pro-
tocol, the CRC8 code is automatically appended to the data
transmitted between a reader and a tag for error detection,
even when one bit of EPC is transmitted. The corrupt data
will be retransmitted. Therefore, we should not be concerned
with channel error.

V. TASH IMPLEMENTATION

Our implementation involves two kinds of protocols: UHF
Gen2 air interface protocol (Gen2) and Low Level Reader Pro-
tocol (LLRP). As shown in Fig. 8, Gen2 protocol defines the
physical and logical interaction between readers and passive
tags, while LLRP allows a client computer to control a reader.
Each client computer connects one ore more RFID readers
via Ethernet cables. LLRP is the driver program (or driver
protocol) for Gen2 readers. We leverage LLRP to manipulate
a reader to broadcast Gen2 commands that we need. Notice
that we do not need particularly implement Gen2 protocol,

Fig. 8. Gen2 vs. LLRP. Gen2 is the air protocol between a reader and
tags while LLRP is the driver protocol between a client computer and a
reader. Our framework leverages LLRP to manipulate a reader to broadcast
Gen2 commands in need.

Fig. 9. Tash implementation. (a) The specification of the XML file defines
various parameters that are required for selection commands. (b) The primary
interfaces provides by tash framework, which is developed by using Java
language and LLRP Toolkit.

which has been implemented in the COTS RFID devices
that we are using. Specifically, LLRP specifies two types
of operations: reader operation (RO) and access operation
(AO). Both operations are represented in XML document form
and transported to a reader through TCP/IP. Note that the
function of LLRP clients is to transmit an XML-Formatted
configuration document from the reader to the reader. It is
no different in using Octane LLRP client [66] (for ImpinJ
reader) or the open-source LLRP toolkit [67] to transmit the
document.

Reader Operation: RO defines the inventory parameters
specified in the Gen2 protocol, such as bitmask, antenna
power, and frequency. Fig. 9(a) shows a simplified instance
of an ROSpec. An ROSpec is composed of at least one
AISpec. Each AISpec is used for an antenna setting.
An AISpec consists of more than one C1G2Filters. The
filter functions as a bitmask. We can set multiple selection
commands by adding multiple C1G2Filters.

Access Operation: AO defines the access parameters for
writing or reading data to and from a tag. We leverage the
C1G2Write inside an AOSpec to write the hash value of the

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TASH: TOWARD SELECTIVE READING AS HASH PRIMITIVES FOR GEN2 RFIDs 827

TABLE III

SUMMARY OF GEN2-COMPATIBILITY ON TAG

EPC into a user-defined memory bank. As the EPCs are highly
related to the products the tags attached, the writing of hash
values should be accomplished by the product manufactures
or administrators. There is almost no overhead to write data
into MemBank-3 since it is allowed to write a batch of
tags simultaneously using Write commands specified in one
AOSpec, without physically changing tags’ positions.

Tash Framework: Our framework is developed by using Java
language and the LLRP Toolkit [67], which is an open-source
library for handling ROSpec and AOSpec. Fig. 9(b) shows
the primary interfaces provided by the tash framework. The
class Tash makes the first selection through its construction
method and allows the calls of three operators to be chained
together in a single statement. The method toAISpec con-
verts a Tash object or a chain of Tash objects into an
AISpec. The entry-inventories are physically executed in
the connected reader when the method run is invoked. This
method allows users to make selective entry-inventories by
passing an index array. For example, the operation Fl(T, r1)⊕
Fl(T, r2)|| Fl(T, r3) ⊗ Fl(T, r4) can be coded in a manner
similar to that shown at the bottom of Fig. 9(b).

VI. MICROBENCHMARK

We start with a few experiments that provide insight to our
hash primitives.

A. Experimental Setup

We evaluate the framework using COTS UHF readers and
tags. We use a total of 3 models of ImpinJ readers (R220,
R420 and R680), each of which is connected to a 900MHz
and 8dB gain directional antenna. In order to better understand
the feasibility and effectiveness of Tash in practice, we test a
total of 3, 000 COTS tags with different models. We divide
these tags into 10 groups of 300 tags each. The tags of each
group are densely attached to a plastic board which is placed in
front of a reader antenna. As shown in Fig. 10, three hundreds
is the maximum number of tags that can be covered by one
directional antenna in our laboratory. We store the 3, 000 EPC
numbers in our database as the ground truth. The 128-bit
MD5 is employed as the common hash function to generate the
hash values of EPCs. The experiments with the same settings
are repeated across the 10 groups, and the average result is
reported.

B. Compatibility Investigation

First, we investigate the compatibility of Gen2 across 10 dif-
ferent types of readers and 18 different types of tags in

Fig. 10. Testbed in our laboratory. Total 300 tags are attached on a board
and covered by a directional reader antenna.

terms of the functions or commands that Tash requires. The
readers and tags may come from different manufacturers but
work together in practice. These investigated products are all
publicly claimed to be completely Gen2-compatible.

Reader Compatibility: We investigate the R220, R420 and
R680 models from ImpinJ [68],3 the Mercury6, Sargas and
M6e models from ThingMagic [69], as well as the ALR-F800,
9900+, 9680 and 9650 models from Alien [70]. We perform
the investigation through real tests for the first three models
of readers (i.e., the ImpinJ series), and investigate the other
readers through their data sheets or manuals (because we
are limited by the lack of hardware). The Gen2-compatibility
of readers is briefly summarized in Table. IV. Consequently,
we have the subsequent findings. (1) All the readers do support
Write/Read command, which Tash uses for writing or read-
ing hash values of EPC numbers. (2) All the readers do support
the Select command, which Tash uses for the selective
reading. (3) The development manual (Page 15, Table 3-1)
released by ImpinJ Corp. [66] states that the Truncate flag
of all its series must be always be set to 0, namely, the flag
is unspecified and allows the reader to decide what truncate
action to take. However, our practical tests suggest that none
model of the ImpinJ series supports the Truncate command,
which Tash uses to hear the one-bit presence signal. The
serviceability of other readers is not clearly indicated in the
manuals of those readers. (4) The Gen2 protocol does not
specify how many C1G2Filters and AISpecs that a reader
should support. Our practical tests suggest that the ImpinJ
series supports 4 C1G2Filters and 16 AISpecs, which
means that we can only use a maximum of four tash operators
each time.

Tag Compatibility: We investigate 9 chip models from
ImpinJ Monza series and 9 additional models from Alien
ALN series. The majority of tags on the market contain

3Since the R1000 is outdated, its compatibility remains unknown.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

828 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

TABLE IV

SUMMARY OF GEN2-COMPATIBILITY ON READER

Fig. 11. Evaluation of tash function. (a) shows the CDF of percents of ‘0’
and ‘1’ appearing in the tash values. (b) shows the CDF of pass rates of
randomness tests.

these 18 models of chips and customized antennas. Table III
summarizes the result of our investigation, from which we
have the subsequent findings. (1) Tags reserve 96 ∼ 480 bits
of memory for storing EPC numbers, among which the size
of 96 bits has become the de facto standard. (2) Tash requires
MemBank-3 to store the hash values. The results of the
investigation show that almost all tags allow to write to and
read from the third memory bank, with an exception of ImpinJ
Monza R6, which does not have the user-defined memory. The
size of the third memory bank fluctuates around 32 ∼ 512 bits.
The de facto standard has become 128 bits.

Summary: Despite positive and public claims, our investi-
gation shows that current COTS RFID devices, regardless of
readers or tags and models, have some defects in their com-
patibility with Gen2, especially with regard to Truncate.
The reason, we may infer, is that these commands are sel-
dom used in practice and therefore never receive attention
from manufacturers. The partial compatibility of such devices
cannot fully achieve the performance Tash brings. Even so,
we are obliged to make the claim, again, that our design strictly
follows the Gen2 protocol. We hope this work can encourage
manufacturers to upgrade their products (e.g., reader firmware)
to achieve full compatibility.

C. Evaluation of Tash Function

Second, we evaluate the tash function with respect to the
randomness and the accessibility.

Randomness: Randomness is the most important metric for
a hash function. It requires that the outputs of a hash function
must be uniformly distributed. To validate the randomness of
the tash function, we collect 99, 886 real EPC numbers from
our partner (i.e., an international logistics company), which
introduced RFID technology for sorting tasks five years ago.
Each EPC number has a length of 96 bits and encodes the basic
information about the package, such as sources, destinations,
serial numbers, and so on. We employ the 128-bit MD5 to
create the hash values of these EPCs. As the minimum size of
the MemBank-3 is 32 bits (see Table IV), we choose to use
only the first 32 bits for our tests. We traverse r and l from
0 ∼ 31 and 1 ∼ 32− r respectively. For each pair of r and l,
we obtain 99, 886 tash values over all the EPCs. Across these
tash values, we further conduct the following two analysis:
(1) We merge 100 tash values, which are randomly selected
from the above results, into a long bit string. We then calculate
the percents of ‘0’ and ‘1’ emerged in that bit string. This
operation is repeated for 100 times. Finally, totally 100 pairs
of percents are obtained. Their CDFs are plotted in Fig. 11(a).
Ideally, each bit has a equal probability of 0.5 to be zero or
one if a hash function makes a good randomicity. From the
figure, we can figure out that the percents distributed between
0.4 and 0.6. In particular, percents of ‘0’ and ‘1’ have means
of 0.49 and 0.50 with standard deviations of 0.043 and 0.044
respectively. (2) We shuffle these values into 100 groups, and
employ the χ2-test with a significance level of 0.05 to test
each group’s goodness-of-fits of the uniform distribution (i.e.,
passed or failed). Then, we finally calculate the pass rate for
a pair of setting. In this manner, we totally obtain 496 pass
rates. More than 60% of the pass rates are over than 0.95.
In particular, three sets of the results with r = 16, 20 and 26
and a variable l, are selected to show in Fig. 11(b). We find
that 90% of the pass rates exceed 0.95 for the three cases,
and their median pass rates are around 0.97. Thus, the two
above statistical results suggest that our tash function has a
very good quality of randomness.

Accessibility: Accessibility refers to the ability to get access
to a tash value from a tag. As aforementioned, we have two
ways to acquire the tash values. The first way is to use the
Read command. The second way is to indirectly access a
tash value through a selective reading. We choose the second
method since it is the basis of our design. Specifically,
we perform a selective reading to determine whether the tags
are collected as expected, when given random inputs and a
possible tash value. We intensively and continuously perform
such readings across the 10 × 300 tags using three 4-port
ImpinJ readers for three rounds of 24 hours in a relatively iso-
lated environment (e.g., an empty room without disturbance).
Surprisingly, we find all the reading results faithfully conform
to our benchmarks without any exceptions. This shows that
the selective reading is well supported by the manufactures
and is both stable and reliable.

D. Evaluation of Tash Table Function

Third, we evaluate the performance of the tash table func-
tion in terms of its balance and gathering speed.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TASH: TOWARD SELECTIVE READING AS HASH PRIMITIVES FOR GEN2 RFIDs 829

Fig. 12. Evaluation of tash table function. (a) shows the balance of a 4-bit tash table across 300 tags using 100 different random seed; (b) shows the time
consumption on gathering 6 hash tables with different dimensions; (c) shows the accuracy of hash bitmap as a function of the channel state.

Balance: A good hash table function will equally assign
each key to a bucket. We expect the output tash table to be
as balanced as possible. To show this feature, we generate
100 different 4-bit tash tables (i.e., each includes 16 entries)
across 300 tags using 100 different random seeds. If the tash
table is well balanced, the expected number of each entry
should be very close to 300/16 = 18.7. Fig. 12(a) shows
the mean number of tags in each entry as well as their
standard deviations. The average number across 16 entries
equals 18.75, which is very close to the expected theoretical
value. The average standard deviation equals 0.44. Thus,
the good randomness quality of tash functions results in output
tash tables being well balanced.

Gathering Overhead: We then consider the time consump-
tion of gathering a tash table. Fixing the random seed, we vary
the table dimension l from 0 to 6. We then measure the
time taken on gathering a tash table with the deployed 300
tags. Fig. 12(b) shows the resulting time as a function of
the table dimension. From the immediately above-mentioned
figure, we can observe the subsequent findings.
• When l = 0 without truncating reply, the result is

equivalent to collecting 300 complete EPCs of all the tags
one by one. Such time consumption (i.e., 4, 524ms) is viewed
as the baseline.
• By contrast, when l > 0 without truncating a reply,

the collection amounts to dividing all the tags into 2l groups
“equally” and then collecting each group independently. In this
manner, when l ≤ 4, such “divide and conquer” approach
is better than “one time deal”, i.e., a drop in overhead of
about 10%. The Gen2 reader uses a Q-adaptive algorithm
for the anti-collision. This algorithm is able to adaptively
learn the best frame length from the collision history. Due
to the division, a smaller number of tags can make reader’s
learning relatively quicker and improve the overall perfor-
mance. However, when l > 4, the performance of “divide and
conquer” approach starts to deteriorate. This is because the
ImpinJ reader supports 16 AISpecs at most (see Table. IV).
We have to re-send another ROSpec for the remaining selec-
tive readings when the number of entry-inventory is above 16
(i.e., l > 4), which introduces additional time consumption.
• We then consider the case where the reply is

truncated to a one-bit presence signal as assumed by
HEPs. Due to the defects of ImpinJ readers in the
implementation of the Truncate command, we use a
USRP N210 to implement a software defined reader,

which can truncate any length of the EPC reply. The
source code of the implementation can be found in [71].
The results show that truncated reply would introduce
about 72.7%, 70.75%, 72.26%, 76.06%, 83.46%, 88.89% and
92.18% drop of the overhead in the six dimensions respec-
tively. Unlike the untruncated results with ImpinJ reader,
our USRP reader does not require to receive the additional
ROSpecs. Thus, we can gain more time reduction as the
dimension increases.

Gathering accuracy: We evaluate the accuracy of gathering
a hash bitmap as a function of the Missing Reading Rate
(MRR). In practice, the reader would miss a tag’s reply
due to the ambient interference or temporal obstacle. The
MRR is the rate of the unsuccessful reading attempts in
which a tag’s EPC is not received correctly. For example,
we attempt to read a tag’s EPC 100 times but it is only
correctly identified in 70 attempts. Then the MRR equals 30%.
Here, the gathering accuracy is expressed as the percentage of
the entries which are correctly determined. To evaluate the
accuracy, we distribute 300 tags around our room instead of
in a regular grid, such that their channel states are different.
Meanwhile, we runs a robot carrying a metal plate to move
forward and backward in the rooms. In this way, we can
emulate a wanted MRR by adjusting the moving speed of the
robot. We totally test four cases where the average MRR is
controlled at 40%, 30%, 20% and 10% respectively. In each
case, we repeat to gather a 7-bit tash table with a length
of 128 entries for 50 times. Fig. 12(c) shows the accuracy
distribution in the four cases. It can be seen from the figure that
the accuracy is above 90% even when the MRR is up 30%.
In other words, 30% tags would be missed to read if reading
them all, but 90% entries in the tash table acquired across
these tags are correct. Clearly, the accuracy of a tash table is
higher than reading tags all. This is because tash only requires
each tag to reply a truncated EPC rather than a whole one. It is
more reliable to transmit a fewer bits.

E. Evaluation of Tash Operators

Finally, we investigate the performance of tash operators.
Superior to existing HEPs, these operators allow us to perform
set operations on-tag and conduct a one-stop inventory. In par-
ticular, we show the performance of OR as a representative
across 300 tags. The tests for other operators are similar
and omitted due to the space limitation. In the experiments,

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

830 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Fig. 13. Performance of tash OR. In Case 1, two tash tables are conducted
OR operation on application layer without truncating replies. In Case 2 and
Case 3 two tables are conducted Tash OR on tags without/with truncating
replies.

we fix the two random seeds but change the dimension of
tash table. Fig. 13 shows the results of three cases. In Case 1,
we independently produce 2 tash tables without truncating a
reply and conduct the OR in the application layer. In Case 2
and Case 3, we conduct on-tag OR function as Tash provides
without and with truncating a reply respectively. Consequently,
when the dimension equals 2, Case 1 takes 6, 511ms on
collecting two tables. On the contrary, the amount of time
taken is reduced to 4, 578ms (i.e., 29.7% drop) if we perform
an on-tag OR function even without truncation (Case 2).
Ideally, the amount of time taken could be further reduced
to 50.97ms by using a truncating reply (Case 3), which offers
a staggering drop in time usage by 99.22%. Our experiments
relate only to the amount of time spent on ORing two tables.
It may be predicted that much more outperformance will be
gained if multiple tables are involved. The tash operators that
we design in this work have never been proposed before.

VII. TASH APPLICATIONS

We then use our prototype to demonstrate the benefits and
potentials of Tash in two typical applications.

A. Application I: Cardinality Estimation

We evaluate our estimation scheme through the testbed as
well as large-scale simulations.

Testbed Based: Our scheme only uses the first entry of
the tash table for the estimation, thereby we only need one
entry-inventory. Fig. 14(a) shows the CDF of estimation results
across 300 tags. We define the error rate as |n− n̂|/n where n̂
is the estimated number. As a result, 90% of the estimations
have an error rate less than 0.1 and a median of 0.04 when
setting the dimension l = 1. In this case, almost half tags
follow into the first entry so the rate could be pretty high,
at the price of longer inventory time. As l increases, the error
rate also increases because less samples are acquired for the
estimation. These experiments show the feasibility of using
tash table for cardinality estimation.

Simulation Based: We then perform the evaluation through
large-scale simulations for two reasons: (1) ensuring its scal-
ability when meeting a huge number of tags. (2) making
comparisons with prior work, which are all simulation-
based. For the fairness, we numerically simulate in Matlab

Fig. 14. Cardinality estimation. (a) shows the CDF of error rates for
estimating 300 tags with our testbed. (2) shows the estimation comparisons
with other theoretical algorithms with simulation. (a) Testbed. (b) Large-scale
simulation.

using tash scheme as well as other five prior RFID estima-
tion schemes: UPE [21], EZB [22], FNEB [72], MLE [73],
ART [28]. We implement these schemes by referring to the
RFID estimation tool developed by Shahzad [74]. Fig. 14(b)
shows the time cost with a varying n given α = 0.9 and
β = 0.08. We observe that our scheme is 5× faster than
the others on average when n < 1000. Thus our scheme
is suitable for the estimation with a small number of tags.
When n > 1000, the performance of our scheme starts to
vibrate between ART and MLE, due to two reasons. First, our
scheme is not collision-free so that more efforts are required
to deal with the collisions incurred by more tags. Second, the
size of a tash table can only increase in the power of two,
making the size always vibrate around the optimal one. Even
so, the advantage of our scheme is still clear: it is the first
RFID estimation scheme that can work in real life. Notice
that ART claimed to work with RFID systems because they
are theoretically compatible with ALOHA protocols. Actually,
the current COTS RFID systems do not allow user to control
the low-level access, like fined-grained adjustment of frame
length and obtaining slot-level feedback, which are necessary
to implement ART. Thus, there is no way for ART to imple-
ment their algorithms over COTS RFID systems without any
hardware modification and fabrication.

B. Application II: Missing Detection

Consider a major warehouse that stores thousands of
apparel, shoes, pallets, and cases. How can a staff immediately
determine if anything is missing? This section demonstrates
the Tash usage for a typical application: missing detection.

1) Problem Formulation: The purpose of missing tag detec-
tion is to quickly find out the missing tags without collecting
all the tags in the scene. Such detection is very useful,

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TASH: TOWARD SELECTIVE READING AS HASH PRIMITIVES FOR GEN2 RFIDs 831

Fig. 15. An example of missing detection. B is the intact tash table generated
using the known EPCs while �B is an instance over the tags in the current
scene. (a) Tashing once. (b) Tashing twice.

especially when thousands of tags are present. We formally
define the problem of detecting missing tags in Problem 1.
We assume that the EPCs of all the tags in a closed system are
stored in a database and known in advance. This assumption
is reasonable and necessary, because it is impossible for us to
tell that a tag is missing without any prior knowledge of its
existence.

Problem 1: How to quickly identify m missing out of n
tags with a false positive rate of γ at most?

2) Proposed Detector: The underlying idea is to compare
two tash tables B and ̂B. B is an intact tash table created by
tashing all the known EPCs which are stored in the database,
while ̂B is an instance tash table obtained from the tags in
the scene. We can detect the missing tags through comparing
the difference between B and ̂B. If the residual table B − ̂B
(i.e., entry-wise subtraction) equals 0, no missing tag event
happens. Otherwise, the tags mapped into the non-zero entries
of the residual table are missing. Fig. 15(a) illustrates an
example in which three tags, t1, t2 and t3, are mapped into
the intact tash table B. ̂B is an instance table where tag t2 is
missing, and thus ̂B[4] = 1. Consequently, (B − ̂B)[4] = 1,
we can definitely infer that one tag is missing. However, it is
impossible for us to tell which tag is missing because t2 and
t3 are simultaneously mapped into the fourth entry.

Inspired by the Bloom filter [75], we perform k tashings to
identify the missing tags as follows:

B = Fl(T, r1)|| . . . ||Fl(T, rk) (3)

The final B after tash ORs is considered to use k independent
hash functions (i.e., induced by k random seeds) to map each
tag into B for k times, as shown in Fig. 15(b). The residual
table of B − ̂B is therefore viewed as a Bloom filter which
represents the missing tags. Thereafter, to answer a query of
whether a tag t is missing, we check whether all entries set by
fl(t, r1), · · · and fl(t, rk) in the residual table have a value of
non-zero. If the answer is yes, then tag t is the missing one.
Otherwise, it is not the missing tag. Fig. 15(b) illustrates an
example in which each tag is tashed twice. The missing tag
t2 can be identified because both the 2rd and the 4th entry
in the residual table have value of non-zero. Despite multiple

Fig. 16. Missing detection with 300 tags. (a) The resulted FPRs as function
of the missing number (b) as function of the dimension of tash tables.

tashings, the query may yield a false positive, where it suggests
a tag is missing even though it is not.

Analysis: To lower the rate of false positive rate, it is
necessary to answer two questions.

(1) How many tash functions do we need? Given the
table dimension l, we expect to optimize the number of
tash functions. There are two competing forces: using more
tash functions gives us more chance to find a zero bit for
a missing tag, but using fewer tash functions increases the
fraction of zero bits in the table. After m missing tags are
tashed into the table, the probability that a specific bit is still 0
is (1 − 1

L)km ≈ e−km/L where L = 2l. Correspondingly,
the probability of a false positive p is given by

p = (1 − e−km/L)k (4)

Namely, a missing tag falls into k non-zero entries. Lemma. 1
suggests that the optimal number of tash functions is achieved
when k = ln 2 · (L/m).

Lemma 1: The false positive rate is minimized when
p = (1/2)k or equivalently k = ln 2 · (L/m).

Proof: Please refer to [75] for the proof. �
(2) How large tash table is necessary to represent all m

missing tags?
Recall that the false positive rate achieves minimum when

p = (1/2)k. Let p ≤ γ. After some algebraic manipulation,
we find

L≥ m log2(1/γ)
ln 2

=m log2 e · log2(1/γ)=1.44m log2(1/γ)

(5)

Finally, putting the above conclusions together, we have the
subsequent theorem.

Theorem 1: Setting the table dimension to �log2(1.44m
log2 (1/γ)) and using �ln 2·(2l/m) random seeds allow the

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

832 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

false positive rate of identifying m missing tags lower than a
given tolerance γ.

3) Evaluation: We evaluate the effectiveness of missing
detection in real case. We randomly remove m tags from our
testbed as shown in §VI. Since we only have 300 tags in total,
we fix the number of random seeds to 2, i.e., k = 2. The
performance is evaluated in term of the false positive rate
(FPR), which is the ratio of number of mistakenly detected
as missing tags to the total number of really missing tags.
Our scheme is able to successfully find out all the missing
tags because the residual table always contains the entries that
missing tags are tashed into. Fig. 16(a) shows the results of the
first case in which we use an 8-bit hash table (i.e., l = 8) to
detect the missing tags. Consequently, the FPR is maintained
around 0.01 when m < 14 (i.e., 5% of the tags are missing).
Fig. 16(b) shows the second case in which we remove 10 tags
and detect the missing tags by changing the dimension of tash
table. As Theorem. 1 suggests, we should set l = 5, 6, 7 to
guarantee the FPR γ < 0.2, 0.1, 0.01. From the figure, we can
find that the results of our experiments completely conform
to this theorem. The real FPRs equal 0.21, 0.07 and 0.008 in
the three cases. Tash enabled missing detection works well in
practice.

VIII. RELATED WORK

Two categories of work are related to ours: the design
of the hash function and the applications of HEP. As the
common HEP applications have been reviewed to motivate our
design in §VIII. Here, we pay more attention on the popular
designs of hash functions. Feldhofer and Rechberger [7] firstly
point that current common hash functions (e.g., MD5, SHA-1,
etc.), are not hardware friendly and unsuitable at all for
RFID tags, which have very constrained computing ability.
Such difficulty has spurred considerable research [7]–[15]. The
primary designs and their features are sketched in Table. I. For
example, Bogdanov et al. [10] propose a hardware-optimized
block cipher, PRESENT, designed with area and power con-
straints. The follow-up work [11] presents three different
architectures of PRESENT and highlights their availability for
both active and passive smart devices. Their implementations
reduce the number of GEs to 1, 000 around. Another follow-up
work [20] extends the design of PRESENT and gives 8 vari-
ants to fulfill different requirements, e.g., DM-PRESENT-80,
DM-PRESENT-128, H-PRESENT-128, etc. The work [8] sug-
gests to choose DES as hash function for RFID tags due
to relatively low complexity, and presents a variant of DES,
called asi.e., DESXL. Lim and Korkishko [12] present a 64-bit
hash function with three key size options (64 bits, 96 bits
and 128 bits), which requires about 3, 500 and 4, 100 GEs.
In summary, despite these optimized designs, majority are
still presented in theory and none of them are available for
the COTS RFID tags. On contrary, our work explores hash
function from another different aspect, that is, leveraging
selective reading to mimic equivalent hash primitives.

IX. CONCLUSION

This work discusses a fundamental issue that how to sup-
plement hash functionality to existing COTS RFID systems,

which is dispensable for prior HEPs. A key innovation of this
work is our design of hash primitives, which is implemented
using selective reading. Tash not only makes a big step forward
in boosting prior HEPs, but also opens up a wide range of
exciting opportunities.

REFERENCES

[1] L. Yang et al., “Tagoram: Realtimetracking of mobile RFID tags to
high precision using COTS devices,” in Proc. ACM MobiCom, 2014,
pp. 237–248.

[2] L. Yang, Y. Li, Q. Lin, X.-Y. Li, and Y. Liu, “Making sense of mechan-
ical vibration period with sub-millisecond accuracy using backscatter
signals,” in Proc. ACM MobiCom, 2016, pp. 16–28.

[3] Global RFID Healthcare and Pharmaceutical Marke, Frost and Sullivan,
San Antonio, TX, USA, 2011.

[4] (2004). EPCglobal Gen2 Specification. [Online]. Available:
www.gs1.org/epcglobal

[5] J. Wang, H. Hassanieh, D. Katabi, and P. Indyk, “Efficient and reli-
able low-power backscatter networks,” in Proc. ACM SIGCOM, 2012,
pp. 61–72.

[6] D. M. Dobkin, The RF in RFID: UHF RFID in Practice. Newnes, NSW,
Australia: Elsevier, 2012.

[7] M. Feldhofer and C. Rechberger, “A case against currently used hash
functions in RFID protocols,” in Proc. Workshops Move Meaningful
Internet Syst. (OTM). Berlin, Germany: Springer, 2006, pp. 372–381.

[8] A. Poschmann, G. Leander, K. Schramm, and C. Paar, “New lightweight
des variants suited for RFID applications,” in Proc. FSE, vol. 4593, 2007,
pp. 196–210.

[9] H. Yoshida et al., “MAME: A compression function with reduced
hardware requirements,” in Proc. Int. Workshop Cryptograph. Hardw.
Embedded Syst. Berlin, Germany: Springer, 2007, pp. 148–165.

[10] A. Bogdanov et al., “PRESENT: An ultra-lightweight block cipher,”
in Cryptographic Hardware and Embedded Systems (Lecture Notes in
Computer Science). Berlin, Germany: Springer, 2007, pp. 450–466.

[11] C. Rolfes, A. Poschmann, G. Leander, and C. Paar, “Ultra-lightweight
implementations for smart devices—Security for 1000 gate equivalents,”
in Smart Card Research and Advanced Applications, vol. 5189. Berlin,
Germany: Springer, 2008, pp. 89–103.

[12] C. H. Lim and T. Korkishko, “mCrypton—A lightweight block cipher for
security of low-cost RFID tags and sensors,” in Proc. WISA, vol. 3786.
Berlin, Germany: Springer, 2005, pp. 243–258.

[13] Y. Yu, Y. Yang, Y. Fan, and H. Min. Security Scheme for RFID
Tag: Auto-ID Labs White Paper WP-HARDWARE-022. Accessed:
Jan. 1, 2019. [Online]. Available: http://www.autoidlabs.org/

[14] D. Hong et al., “HIGHT: A new block cipher suitable for low-resource
device,” in Proc. CHES, vol. 4249. Berlin, Germany: Springer, 2006,
pp. 46–59.

[15] T. Good and M. Benaissa, “Hardware results for selected stream cipher
candidates,” State Art Stream Ciphers, vol. 7, pp. 191–204, Feb. 2007.

[16] M. Philipose, J. R. Smith, B. Jiang, A. Mamishev, S. Roy, and
K. Sundara-Rajan, “Battery-free wireless identification and sensing,”
IEEE Pervasive Comput., vol. 4, no. 1, pp. 37–45, Jan. 2005.

[17] H. Zhang, J. Gummeson, B. Ransford, and K. Fu, “Moo: A batteryless
computational RFID and sensing platform,” Dept. Comput. Sci., Univ.
Massachusetts, Boston, MA, USA, Tech. Rep. UM-CS-2011-020, 2011.

[18] C. Pendl, M. Pelnar, and M. Hutter, “Elliptic curve cryptography on the
WISP UHF RFID tag,” in RFID. Security and Privacy vol. 7055, no. 1.
Jun. 2011, pp. 32–47.

[19] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong authentication
for RFID systems using the AES algorithm,” in Proc. CHES, vol. 4.
Berlin, Germany: Springer, 2004, pp. 357–370.

[20] A. Bogdanov et al., “Hash functions and RFID tags: Mind the gap,” in
Proc. IACR CHES, 2008, pp. 283–299.

[21] M. Kodialam and T. Nandagopal, “Fast and reliable estimation schemes
in RFID systems,” in Proc. ACM MobiCom, 2006, pp. 322–333.

[22] M. Kodialam, T. Nandagopal, and W. C. Lau, “Anonymous track-
ing using RFID tags,” in Proc. IEEE INFOCOM, May 2007,
pp. 1217–1225.

[23] B. Sheng, C. C. Tan, Q. Li, and W. Mao, “Finding popular categories
for RFID tags,” in Proc. ACM MobiHoc, 2008, pp. 159–168.

[24] W.-K. Sze, W.-C. Lau, and O.-C. Yue, “Fast RFID counting under
unreliable radio channels,” in Proc. IEEE ICC, Jun. 2009, pp. 1–5.

[25] C. Qian, Y. Liu, H. Ngan, and L. M. Ni, “ASAP: Scalable identification
and counting for contactless RFID systems,” in Proc. IEEE ICDCS,
2010, pp. 52–61.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TASH: TOWARD SELECTIVE READING AS HASH PRIMITIVES FOR GEN2 RFIDs 833

[26] C. Qian, H. Ngan, Y. Liu, and L. M. Ni, “Cardinality estimation for
large-scale RFID systems,” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 9, pp. 1441–1454, Sep. 2011.

[27] V. Shah-Mansouri and V. W. S. Wong, “Cardinality estimation in RFID
systems with multiple readers,” IEEE Trans. Wireless Commun., vol. 10,
no. 5, pp. 1458–1469, May 2011.

[28] M. Shahzad and A. X. Liu, “Every bit counts: Fast and scalable RFID
estimation,” in Proc. ACM MobiCom, 2012, pp. 365–376

[29] Y. Zheng and M. Li, “ZOE: Fast cardinality estimation for large-scale
RFID systems,” in Proc. IEEE INFOCOM, Apr. 2013, pp. 908–916.

[30] B. Chen, Z. Zhou, and H. Yu, “Understanding RFID counting protocols,”
in Proc. ACM MobiCom, 2013, pp. 291–302.

[31] Q. Xiao, B. Xiao, and S. Chen, “Differential estimation in dynamic
RFID systems,” in Proc. IEEE INFOCOM, Apr. 2013, pp. 295–299.

[32] W. Gong, K. Liu, X. Miao, and H. Liu, “Arbitrarily accurate approx-
imation scheme for large-scale RFID cardinality estimation,” in Proc.
IEEE INFOCOM, Apr. 2014, pp. 477–485.

[33] X. Liu, K. Li, H. Qi, B. Xiao, and X. Xie, “Fast counting the key tags in
anonymous RFID systems,” in Proc. IEEE ICNP, Oct. 2014, pp. 59–70.

[34] Y. Zheng and M. Li, “Towards more efficient cardinality estimation
for large-scale RFID systems,” IEEE/ACM Trans. Netw., vol. 22, no. 6,
pp. 1886–1896, Dec. 2014.

[35] X. Liu et al., “RFID cardinality estimation with blocker tags,” in Proc.
IEEE INFOCOM, Apr. 2015, pp. 1679–1687.

[36] Y. Hou, J. Ou, Y. Zheng, and M. Li, “PLACE: Physical layer cardinality
estimation for large-scale RFID systems,” in Proc. IEEE INFOCOM,
Oct. 2015, pp. 1957–1965.

[37] C. C. Tan, B. Sheng, and Q. Li, “How to monitor for missing RFID
tags,” in Proc. IEEE ICDCS, Jun. 2008, pp. 295–302.

[38] T. Li, S. Chen, and Y. Ling, “Identifying the missing tags in a large
RFID system,” in Proc. ACM MobiHoc, 2010, pp. 1–10.

[39] W. Luo, S. Chen, T. Li, and S. Chen, “Efficient missing tag detection
in RFID systems,” in Proc. IEEE INFOCOM, Apr. 2011, pp. 356–360.

[40] R. Zhang, Y. Liu, Y. Zhang, and J. Sun, “Fast identification of the
missing tags in a large RFID system,” in Proc. IEEE SECON, Jun. 2011,
pp. 278–286.

[41] W. Luo, S. Chen, T. Li, and Y. Qiao, “Probabilistic missing-tag detection
and energy-time tradeoff in large-scale RFID systems,” in Proc. ACM
MobiHoc, 2012, pp. 95–104.

[42] Y. Zheng and M. Li, “P-MTI: Physical-layer missing tag identification
via compressive sensing,” IEEE/ACM Trans. Netw., vol. 23, no. 4,
pp. 1356–1366, Aug. 2015.

[43] C. C. Tan, B. Sheng, and Q. Li, “Efficient techniques for monitoring
missing RFID tags,” IEEE Trans. Wireless Commun., vol. 9, no. 6,
pp. 1882–1889, Jun. 2010.

[44] T. Li, S. Chen, and Y. Ling, “Efficient protocols for identifying the
missing tags in a large RFID system,” IEEE/ACM Trans. Netw., vol. 21,
no. 6, pp. 1974–1987, Dec. 2013.

[45] X. Liu, K. Li, G. Min, Y. Shen, A. X. Liu, and W. Qu, “A multiple
hashing approach to complete identification of missing RFID tags,” IEEE
Trans. Commun., vol. 62, no. 3, pp. 1046–1057, Mar. 2014.

[46] W. Luo, S. Chen, Y. Qiao, and T. Li, “Missing-tag detection and energy–
time tradeoff in large-scale RFID systems with unreliable channels,”
IEEE/ACM Trans. Netw., vol. 22, no. 4, pp. 1079–1091, Aug. 2014.

[47] C. Ma, J. Lin, and Y. Wang, “Efficient missing tag detection in a large
RFID system,” in Proc. IEEE TrustCom, Jun. 2012, pp. 185–192.

[48] W. Xie et al., “RFID seeking: Finding a lost tag rather than only
detecting its missing,” J. Netw. Comput. Appl., vol. 42, pp. 135–142,
Jun. 2014.

[49] M. Shahzad and A. X. Liu, “Expecting the unexpected: Fast and reliable
detection of missing RFID tags in the wild,” in Proc. IEEE INFOCOM,
Apr. 2015, pp. 1939–1947.

[50] M. Shahzad and A. X. Liu, “Fast and reliable detection and identification
of missing RFID tags in the wild,” IEEE/ACM Trans. Netw., vol. 24,
no. 6, pp. 3770–3784, Dec. 2016.

[51] J. Yu, L. Chen, R. Zhang, and K. Wang, “On missing tag detection
in multiple-group multiple-region RFID systems,” IEEE Trans. Mobile
Comput., vol. 16, no. 5, pp. 1371–1381, May 2016.

[52] J. Yu, L. Chen, and K. Wang. (2015). “Finding needles in a haystack:
Missing tag detection in large RFID systems.” [Online]. Available:
https://arxiv.org/abs/1512.05228

[53] B. Sheng, Q. Li, and W. Mao, “Efficient continuous scanning in RFID
systems,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 1–9.

[54] L. Xie, Q. Li, X. Chen, S. Lu, and D. Chen, “Continuous scanning with
mobile reader in RFID systems: An experimental study,” in Proc. ACM
MobiHoc, 2013, pp. 11–20.

[55] H. Liu, W. Gong, X. Miao, K. Liu, and W. He, “Towards adaptive
continuous scanning in large-scale RFID systems,” in Proc. IEEE
INFOCOM, Apr. 2014, pp. 486–494.

[56] L. Xie, H. Han, Q. Li, J. Wu, and S. Lu, “Efficiently collecting
histograms over RFID tags,” in Proc. IEEE INFOCOM, Apr. 2014,
pp. 145–153.

[57] W. Luo, Y. Qiao, and S. Chen, “An efficient protocol for RFID
multigroup threshold-based classification,” in Proc. IEEE INFOCOM,
Apr. 2013, pp. 890–898.

[58] W. Luo, Y. Qiao, S. Chen, and M. Chen, “An efficient protocol for
RFID multigroup threshold-based classification based on sampling and
logical bitmap,” IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 397–407,
Feb. 2016.

[59] J. Liu, B. Xiao, S. Chen, F. Zhu, and L. Chen, “Fast RFID grouping
protocols,” in Proc. IEEE INFOCOM, Apr. 2015, pp. 1948–1956.

[60] X. Liu, B. Xiao, S. Zhang, K. Bu, and A. Chan, “STEP: A time-efficient
tag searching protocol in large RFID systems,” IEEE Trans. Comput.,
vol. 64, no. 11, pp. 3265–3277, Nov. 2015.

[61] Y. Zheng and M. Li, “Fast tag searching protocol for large-scale
RFID systems,” IEEE/ACM Trans. Netw., vol. 21, no. 3, pp. 924–934,
Jun. 2013.

[62] Y. Qiao, S. Chen, T. Li, and S. Chen, “Energy-efficient polling protocols
in RFID systems,” in Proc. ACM MobiHoc, 2011, p. 25.

[63] Y. Qiao, S. Chen, and T. Li, “Tag-ordering polling protocols in RFID
systems,” in RFID as Infrastructure. Berlin, Germany: Springer, 2013,
pp. 59–82.

[64] B. Li, Y. He, W. Liu, L. Wang, and H. Wang, “LocP: An efficient
localized polling protocol for large-scale RFID systems,” in Proc. IEEE
ICNP, Nov. 2016, pp. 1–10.

[65] Y. Zhang, L. T. Yang, and J. Chen, RFID and Sensor Networks:
Architectures, Protocols, Security, and Integrations. Boca Raton, FL,
USA: CRC Press, 2009.

[66] Octane LLRP Version 4.8.0, ImpinJ, Seattle, WA, USA, 2017.
[67] (2010). LLRP Toolkit. [Online]. Available: http://llrp.org
[68] (2017). ImpinJ. [Online]. Available: http://www.impinj.com/
[69] (2017). ThingMagic. [Online]. Available: http://www.thingmagic.com
[70] (2017). Alien. [Online]. Available: http://www.alientechnology.com
[71] (2018). USRP-Enabled Tash Reader. [Online]. Available:

https://github.com/tagsys/tash2
[72] H. Han et al., “Counting RFID tags efficiently and anonymously,” in

Proc. IEEE INFOCOM, Mar. 2010, pp. 1–9.
[73] T. Li, S. Wu, S. Chen, and M. Yang, “Energy efficient algorithms for

the RFID estimation problem,” in Proc. IEEE INFOCOM, Mar. 2010,
pp. 1–9.

[74] M. Shahzad. RFID Estimation Tool. Accessed: Jan. 1, 2019. [Online].
Available: http://www4.ncsu.edu/~mshahza/publications.html

[75] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Math., vol. 1, no. 4, pp. 485–509, 2004.

Qiongzheng Lin (M’18) received the B.S. degree
and Ph.D. degrees from the School of Software,
Tsinghua University, China. He is currently a Post-
Doctoral Fellow of the Department of Computing,
The Hong Kong Polytechnic University. His research
interests include radio frequency identification and
sensor network, mobile sensing, and pervasive com-
puting. He is a member of the ACM.

Lei Yang received the B.S. and Ph.D. degrees from
the Department of Computer Science and Technol-
ogy, School of Software, XiâŁ™an Jiaotong Univer-
sity. He was a Post-Doctoral Fellow with the School
of Software, Tsinghua University. He is currently a
Research Assistant Professor with the Department of
Computing, The Hong Kong Polytechnic University.
His research interests include the Internet of Things,
radio frequency identification and backscatters, and
wireless and mobile computing. He was a recipient
of the Best Paper Award from MobiCom 2014 and

MobiHoc 2014, the Best Video Award (Runner-Up) from MobiCom 2016, the
Best-In-Session Presentation Award from INFOCOM 2017, the Best Demo
Award (Runner-Up) from MobiCom 2018, and the ACM China Doctoral
Dissertation Award.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

834 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Chunhui Duan (S’16) received the B.S. degree
from the School of Software, Tsinghua University,
where she is currently pursuing the Ph.D. degree.
Her research interests include radio frequency iden-
tification, wireless network, and mobile sensing and
pervasive computing.

Zhenlin An received the B.S. degree from the
School of Information Communicating Engineering,
Dalian University of Technology, China, in 2017.
He is currently pursuing the Ph.D. degree with the
Department of Computing, The Hong Kong Poly-
technic University. His research interests include the
wireless and backscatter communication and mobile
computing.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 03,2020 at 11:03:32 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

